Araştırma Makalesi
BibTex RIS Kaynak Göster

Dynamising conceptual change approach to teach some genetics concepts

Yıl 2015, Cilt: 6 Sayı: 2, 51 - 68, 30.06.2015
https://doi.org/10.19160/e-ijer.39715

Öz

ABSTRACT

This study investigates the effect of a conceptual change approach over traditional instruction on students’ understanding of DNA, gene and chromosome concepts. 52 10th grade students belonging two different classes participated the study. One of the classes was assigned randomly to the control group, and the other class was assigned randomly to the experimental group. During teaching of the topic of DNA and gene related concepts in the biology curriculum, the conceptual change approach was applied in the experimental group whereas ‘traditional instruction’ was followed in the control group. The data were analyzed using analysis of SPSS 10.0. The results showed that the students in the experimental group performed better when compared to the control group. For the genetic concept achievement test, the posttest average percent of correct responses of the experimental group was % 79.46 and that of the control group was % 59.79 after the treatment. Add to this, it was found that students’ attitudes towards biology lessons made a statistically significant contribution to the variation in students’ understanding of DNA, gene and chromosome related concepts.

Kaynakça

  • Al khawaldeh S.A., (2013). Prediction/discussion-based learning cycle versus conceptual change text: comparative effects on students’ understanding of genetics. Research in Science & Technological Education, 31(2), 168-183.
  • Alparslan, C., Tekkaya, C. & Geban, O. (2003). Using the conceptual change instruction to improve learning. Journal of Biological Education, 37(3), 133–137.
  • Alvermann, D.E., and Hague, S.A. (1989). Comprehension of counterintuitive science texts: Effects of prior knowledge and text structure. Journal of Educational Research, 82, 197-202.
  • Annetta A. L., Minogue J., Holmes Y.S., Cheng M-T. (2009). Investigating the impact of video games on high school students’engagement and learning about genetics. Computers & Education, 53(1), 74–85.
  • Bahar, M., Johnstone, A. H. & Hansell, M. H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84-86.
  • Beentjes, J. W. J., & van der Voort, T. H. A. (1991). Children's written accounts of televised and printed stories. Educational Technology Research & Development, 39(3), 15-26.
  • Beerenwinkel, A., Parchmann I., Gräsel C. (2011). Conceptual change texts in chemistry teaching: A study on the particle model of matter. International Journal of Science and Mathematics Education, 9, 1235-1259
  • Boujemaa A., Pierre C., Sabah, S., Salahaddine K., Jamal, C., Abdellatif, C. (2010). Universitystudents’ conceptions about the concept of gene: Intrest of historical approach. US-China Education Review, 7(2), 9-15.
  • Bourgonjon J., Valcke M., SoetaertR., Schellens T. (2010). Students’ perceptions about the use of video games in the classroom. Computers & Education 54, 1145–1156.
  • Burns E (1995). DNA writing paper: an educational aid in A-level biology. Journal of Biological Education, 29(1), 8-11.
  • Canpolat, N., Pinarbasi, T., Bayrakçeken, S. and Geban, O. (2006). The conceptual change approach to teaching chemical equilibrium. Research in Science & Technological Education, 24 (2), 217-235.
  • Chambers, S. K., & Andre, T. (1997). Gender, prior knowledge, interest and experience in electricity and conceptual change text manipulations in learning about direct current. Journal of Research in Science Teaching, 34(2), 107-123.
  • Çakır, Ö.S., Geban, Ö. And Yürük, N., (2002). Effectiveness of Conceptual Change Texts Oriented Instruction on Students’ Understanding of Cellular Respiration Concepts. Biochemistry and Molecular Biology Education, 30, 239-243.
  • Çetingül, İ., Geban Ö., (2011). Using conceptual change texts with analogies for misconceptions in acids and bases. Hacettepe University Journal of Education, 41, 112-123.
  • Dagher, Z. R. (1994). Does the use of analogies contribute to conceptual change?, Science Education.78(6), 601–614.
  • Dagher, Z. R. (1995). Review of studies on the effectiveness of instructional analogies in science education. Science Education,79(3), 295–312.
  • Diakidoy, I. N., Kendeou, P., & Ioannides, C. (2003). Reading about energy: The effects of text structure in science learning and conceptual change. Contemporary Educational Psychology, 28, 335–356.
  • Dilber, R., (2010). Effect of conceptual change instruction on students' understanding of electricity concepts. International Journal of Innovation and Learning, 7 (4), 478-496.
  • Durkin, K., & Barber, B. (2002). Not so doomed: Computer game play and positive adolescent development. Journal of Applied Developmental Psychology, 23(4), 373–392.
  • Fisher, K. M. (1992). Improving high school genetics instruction, In M. U. Smith and P. E. Simmons (Eds.), Teaching genetics: Recommendations and research (Proceedings of a national conference) (pp. 24-28). Cambridge, MA: National Science Foundation.
  • Gardner, H. (1993). Frames of mind: The theory of multiple intelligences. New York, NY: Basic Books.
  • Geban, Ö., Ertepınar, H., Yılmaz, G., Atlan, A. & Şahbaz, O. (1994). The effects of Computer Aided Instruction on Students’ Science Achievements and Motivation I. National Symposium of Science Education, Dokuz Eylül University, İzmir, TURKEY
  • Guzzetti, B. J., (2000). Learning counterintuitive science concepts: What we have learned from over a decade of research?, Reading & Writing Quarterly, 16(2), 89-95.
  • Harrison A. G. (2008). Teaching with analogies: Friends or foes? In: A G Harrison & R K Coll (Eds), Using analogies in middle and secondary science classrooms (pp6-21). Thousand Oaks, CA: Corwin Press.
  • Huang S. D. and Aloi J. (1991). The Impact of Using Interactive Video in Teaching General Biology, The American Biology Teacher, 53(5), 281-284.
  • Hynd C., Alvermann D., Qian G., (1997). Preservice Elementary School Teachers’ Conceptual Change about Projectile Motion: Refutation Text, Demonstration, Affective Factors, and Relevance. Science Education, 81, 1-27.
  • Kibuka-Sebitosi, E., (2007). Understanding genetics and inheritance in rural school. Journal of Biological Education, 41(2), 56-61.
  • Lewis, J. (2004). Traits, genes, particles and information: re-visiting students’ understandings of genetics. International Journal of Science Education, 26 (2), 195–206
  • Lewis, J., Driver, R., Leach, J. And Wood-Robinson, C. (1997). Understanding Genetics, ‘Young People’s Understanding of, and Attitudes to, the New Genetics’ project Leeds: University of Leeds, CSSME). ISBN: 0 94421 89 9, pp, 92 .
  • Lewis J., Kattmann U. (2004). Traits, genes, particles and information: re-visiting students’ understandings of genetics. Int. J. Sci. Educ. 26, 195–206.
  • Lewis J., Leach J., Wood-Robinson C. (2000a). What's in a cell?—Young people's understanding of the genetic relationship between cells, within an individual. J. Biol. Educ. 34, 129–132.
  • Lewis, J., Leach, J. & Wood-Robinson, C. (2000b). All in the genes?—Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74-79.
  • Lewis J., Wood-Robinson C. (2000). Genes, chromosomes, cell division and inheritance: do students see any relationship?. International Journal of Science Education 22, 177–195.
  • Malacinski, G.M and Zell P. W. (1996). Manipulating the “invisible”: Learning molecular biology using inexpensive models. The American Biology Teacher, 58(7), 428-432.
  • Marbach-Ad G., Stavy R. (2000). Student's cellular and molecular explanation of genetic phenomena. Journal of Biological Education 34, 200–205.
  • Mintzes, J.J. and Wandersee, J.H. (1998). Research in Science Teaching and Learning: A Human Constructivist View. In J.J., Mintzes, J.H. Wandersee, and J.D. Novak (eds). Teaching Science for Understanding: A Human Constructivist View, San Diego, CA: Academic Press, pp 60-90.
  • Mintzes, J.J. and Wandersee, J.H. and Novak J.D., (2001). Assessing understanding in biology, Journal of Biological Education, 35, 118-123.
  • Nilsson N., Christense H.W., Hartvigsen J., (1996). The interexaminer reliability of measuring passive cervical range of motion. Revisited Journal of Manipulative Physiological Therapeutics, 19, p. 302–304
  • Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52(1), 1– 12
  • Pekel, F.O. (2005). Investigations of effectiveness of conceptual change approach on understanding of DNA, gene, chromosome concepts. Unpublished PhD dissertation, Ataturk University, Instutitue of Science, Erzurum: Turkey.
  • Pınarbaşı, T., Canpolat N., Bayrakçeken S., Geban Ö., (2006). An Investigation of Effectiveness of Conceptual Change Text-oriented Instruction on Students’ Understanding of Solution Concepts. Research in Science Education, 36, 313-335
  • Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accommodation of a scientific conception. Science Education, 66, 211-227.
  • Rotbain Y., Marbch-Ad G, Stavy R. (2005). Understanding molecular genetics through a drawing- based activity. Journal of Biological Education, 39 (4), 174-178.
  • Schnotz W. (2002). Towards an integrated view of learning from text visual displays. Educational Psychology Review, 14, 101-120.
  • Smith, L. A., and Williams, J. M., (2007). “It’s the X and Y Thing: Cross-Sectional and Longitudinal Changes in Children’s Understanding of Genes”. Research in Science Education, 37, 407–422.
  • Stavy, R. (1991). Using analogy to overcome misconceptions about conversation of matter. Journal of Research in Science Teaching, 28, 305–313.
  • Sungur, S., Tekkaya, C. and Geban, Ö.,(2001). The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Students' Understanding of Human Circulatory System. School Science and Mathematics, 101, 91-101.
  • Templin A.T., Fetters M.K. (2002). A working model of protein synthesis using legoTM building blocks. The American Biology Teacher, 64(9), 673-678.
  • Thompson, J., & Soyibo, K. (2002). Effects of lecture, teacher demonstrations, discussion and practical work on 10th graders’ attitudes to chemistry and understanding of electrolysis. Research in Science and Technological Education, 20(1), 25-37.
  • Treagust, D. F., Chittleborough, G., & Mamialo, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368.
  • Treagust, D. F., Duit, R., Joslin, P. and Lindauer, I. (1992). Science teachers' use of analogies: Observations from classroom practice. International Journal of Science Education, 14, 413–422.
  • Treagust, D.F., Harrison A.G., & Venville G.J., (1996). Using an analogical teaching approach to engender conceptual change. International Journal of Science Education, 18 (2), 213-229.
  • Venville, G., Donovan, J., (2008). How pupils use a model for abstract concepts in genetics. Journal of Biological Education, 43(1), 6-14.
  • Wang J., and Hartley K., (2003). Video Technology as a Support for Teacher Education Reform. Journal of Technology and Teacher Education, 11(1), 105-138.
  • Wood-Robinson C., Lewis J, Leach J., (2000). Young people's understanding of the nature of genetic information in the cells of an organism. Journal of Biological Education, 35(1), 29–36.
  • Yılmaz, D., Tekkaya, C., and Sungur, S., (2011). The Comparative Effects of Prediction/Discussion- Based Learning Cycle, Conceptual Change Text, and Traditional Instructions on Student Understanding of Genetics. International Journal of Science Education 33, 607–628.
  • Yip D. Y., (2001). Promoting the development of a conceptual change model of science instruction in prospective secondary biology teachers. International Journal of Science Education, 23(7), 755- 770.

Genetik Kavramlarının Öğretiminde Kavramsal Değişim Yaklaşımının Etkinliğinin Arttırılması

Yıl 2015, Cilt: 6 Sayı: 2, 51 - 68, 30.06.2015
https://doi.org/10.19160/e-ijer.39715

Öz

GENİŞLETİLMİŞ ÖZET Kavram yanılgıları öğrencilerin bilimsel açıklamaları anlama yeteneklerini sınırlandırarak (Lewis and Kattmann, 2004), diğer konu ve kavramları eksik, ilişkisiz öğrenmelerine ve başka kavram yanılgılarına neden olarak daha sonraki öğrenmelerini engelleyebilmektedir. Amaç: Dolayısıyla bu çalışmanın amacı, kavramsal değişim yaklaşımının, lise öğrencilerinin DNA, gen ve kromozom kavramlarını ile ilgili başarılarına ve biyolojiye karşı tutumlarına olan etkisini, geleneksel öğretim yaklaşımı ile karşılaştırarak ortaya koymaktır. Yöntem: Çalışmanın örneklemini bir lisenin fen bölümlerinde öğrenim gören aynı öğretim elemanın ders verdiği iki farklı şubedeki 52 ikinci sınıf öğrencisi oluşturmaktadır. Şubelerden biri, kavramsal değişim yaklaşımın kullanılacağı deney grubu; diğeri ise geleneksel öğretim yaklaşımının kullanıldığı kontrol grubu olarak rastgele seçilmiştir. Deney grubunda DNA, gen, kromozom kavramları ile ilgili konular kavramsal değişim yaklaşımını esas alan yöntemlerle, kontrol grubunda ise geleneksel ders anlatım yaklaşımlarına uygun yöntemlerle işlenmiştir. Çalışmada veri toplama aracı olarak tarafımızca oluşturulan DNA, Gen, Kromozom Kavram Testi ve literatürden adapte ettiğimiz Biyoloji Dersi Tutum Ölçeği olmak üzere iki ölçekten yararlanılmıştır. Araştırmada ileri sürülen hipotezleri test etmek için bilgisayar ortamında SPSS paket programındaki “Independent sample t-test” ve “Paired sample t-test” kullanılmıştır. Bulgular: Uygulama öncesi uygulanan “Bağımsız gruplar t-testi” deney ve kontrol gruplarımız arasında genetik kavramlar başarı testi açısından (t = 0.98, p = 0.330) ve biyoloji dersine ilişkin tutumları açısından (t = 0.22, p = 0.826) istatistiksel olarak anlamlı bir farklılık olmadığı görülmüştür. Uygulama sonrasında gerçekleştirilen “Bağımlı gruplar t-testi” kontrol grubunun genetik kavramlar ön ve son test ortalamaları arasında istatistiksel olarak anlamlı bir farklılığın olduğunu (t = 11.89, p = 0.000; pretest = 9.52, posttest = 14.08), benzer şekilde deney grubunun ön ve son test ortalamaları arasında da (t = 12.03, p = 0.000; pretest = 8.87, posttest = 19.54) istatistiksel olarak anlamlı bir farklılığın olduğu ortaya koymuştur. Deney ve kontrol gruplarının genetik kavramlar testi son test başarı ortalamaları “bağımsız gruplar t-testi” kullanılarak karşılaştırıldığında aralarında deney grubu lehine istatistiksel olarak anlamlı bir farklılık (t = 6.19, p = 0.000) olduğu tespit edilmiştir. Ayrıntılı bilgi için bakınız Tablo 4. Deney ve kontrol gruplarının ön ve son test biyoloji dersine ilişkin tutum puanları arasında kullanılan yöntemlerden kaynaklanan farklılık bulunup bulunmadığını belirlemek amacıyla “bağımlı gruplar t-testi” yapılmıştır. Bu test sonuçlarına göre kontrol grubu ön ve son test tutum puanları arasında istatistiksel anlamlı bir farklılığa rastlanmazken (t = 0.16, p = 0.871), deney grubunun ön ve son test tutum puanları arasında (t = 7.06, p = 0.000) istatistiksel olarak anlamlı bir farklığa rastlanması deney grubunda kullandığımız stratejilerin sadece derse ilişkin başarı sağlamakla kalmadığını, aynı zamanda öğrencilerin derse ilişkin olumlu tutumlar geliştirmesini de sağladığı şeklinde yorumlanmıştır. Ayrıntılı bilgi için bakınız Tablo 5. Yorum ve Öneriler: Bu çalışmanın önemli tespitlerinden biri, öğretmen merkezli ve ders kitabı tabanlı öğretimin öğrencilerin kavramsal öğrenmelerini geliştirmede istenen başarı düzeyini sağlayamadığıdır. İkinci önemli tespiti ise, DNA, gen, kromozom kavramlarının öğretiminde kavramsal değişim yaklaşımı çerçevesinde analoji, kavramsal değişim metinleri, animasyonlu video stratejilerin kullanılmasının öğrencilerin bu kavramları daha ileri ve anlamlı düzeyde öğrenmelerini sağlamasıdır. Üçüncü önemli tespiti de, kullandığımız stratejiler kombinasyonunun öğrencilere sıkıcı gelen soyut kavramları somutlaştırabilmelerine, fikirlerinin doğruluğunu test etmek için işbirlikli çalışabilmelerine imkan sağladığından biyoloji dersine karşı daha olumlu tutumlar kazanmalarına vesile olmasıdır. Bu nedenle, DNA, gen, kromozom gibi soyut moleküler genetik kavramlarına yer verilen derslerde öğretmen ve araştırmacılara bu kavramların öğretiminde işe koştuğumuz stratejileri kullanmalarını tavsiye ediyoruz.

Kaynakça

  • Al khawaldeh S.A., (2013). Prediction/discussion-based learning cycle versus conceptual change text: comparative effects on students’ understanding of genetics. Research in Science & Technological Education, 31(2), 168-183.
  • Alparslan, C., Tekkaya, C. & Geban, O. (2003). Using the conceptual change instruction to improve learning. Journal of Biological Education, 37(3), 133–137.
  • Alvermann, D.E., and Hague, S.A. (1989). Comprehension of counterintuitive science texts: Effects of prior knowledge and text structure. Journal of Educational Research, 82, 197-202.
  • Annetta A. L., Minogue J., Holmes Y.S., Cheng M-T. (2009). Investigating the impact of video games on high school students’engagement and learning about genetics. Computers & Education, 53(1), 74–85.
  • Bahar, M., Johnstone, A. H. & Hansell, M. H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84-86.
  • Beentjes, J. W. J., & van der Voort, T. H. A. (1991). Children's written accounts of televised and printed stories. Educational Technology Research & Development, 39(3), 15-26.
  • Beerenwinkel, A., Parchmann I., Gräsel C. (2011). Conceptual change texts in chemistry teaching: A study on the particle model of matter. International Journal of Science and Mathematics Education, 9, 1235-1259
  • Boujemaa A., Pierre C., Sabah, S., Salahaddine K., Jamal, C., Abdellatif, C. (2010). Universitystudents’ conceptions about the concept of gene: Intrest of historical approach. US-China Education Review, 7(2), 9-15.
  • Bourgonjon J., Valcke M., SoetaertR., Schellens T. (2010). Students’ perceptions about the use of video games in the classroom. Computers & Education 54, 1145–1156.
  • Burns E (1995). DNA writing paper: an educational aid in A-level biology. Journal of Biological Education, 29(1), 8-11.
  • Canpolat, N., Pinarbasi, T., Bayrakçeken, S. and Geban, O. (2006). The conceptual change approach to teaching chemical equilibrium. Research in Science & Technological Education, 24 (2), 217-235.
  • Chambers, S. K., & Andre, T. (1997). Gender, prior knowledge, interest and experience in electricity and conceptual change text manipulations in learning about direct current. Journal of Research in Science Teaching, 34(2), 107-123.
  • Çakır, Ö.S., Geban, Ö. And Yürük, N., (2002). Effectiveness of Conceptual Change Texts Oriented Instruction on Students’ Understanding of Cellular Respiration Concepts. Biochemistry and Molecular Biology Education, 30, 239-243.
  • Çetingül, İ., Geban Ö., (2011). Using conceptual change texts with analogies for misconceptions in acids and bases. Hacettepe University Journal of Education, 41, 112-123.
  • Dagher, Z. R. (1994). Does the use of analogies contribute to conceptual change?, Science Education.78(6), 601–614.
  • Dagher, Z. R. (1995). Review of studies on the effectiveness of instructional analogies in science education. Science Education,79(3), 295–312.
  • Diakidoy, I. N., Kendeou, P., & Ioannides, C. (2003). Reading about energy: The effects of text structure in science learning and conceptual change. Contemporary Educational Psychology, 28, 335–356.
  • Dilber, R., (2010). Effect of conceptual change instruction on students' understanding of electricity concepts. International Journal of Innovation and Learning, 7 (4), 478-496.
  • Durkin, K., & Barber, B. (2002). Not so doomed: Computer game play and positive adolescent development. Journal of Applied Developmental Psychology, 23(4), 373–392.
  • Fisher, K. M. (1992). Improving high school genetics instruction, In M. U. Smith and P. E. Simmons (Eds.), Teaching genetics: Recommendations and research (Proceedings of a national conference) (pp. 24-28). Cambridge, MA: National Science Foundation.
  • Gardner, H. (1993). Frames of mind: The theory of multiple intelligences. New York, NY: Basic Books.
  • Geban, Ö., Ertepınar, H., Yılmaz, G., Atlan, A. & Şahbaz, O. (1994). The effects of Computer Aided Instruction on Students’ Science Achievements and Motivation I. National Symposium of Science Education, Dokuz Eylül University, İzmir, TURKEY
  • Guzzetti, B. J., (2000). Learning counterintuitive science concepts: What we have learned from over a decade of research?, Reading & Writing Quarterly, 16(2), 89-95.
  • Harrison A. G. (2008). Teaching with analogies: Friends or foes? In: A G Harrison & R K Coll (Eds), Using analogies in middle and secondary science classrooms (pp6-21). Thousand Oaks, CA: Corwin Press.
  • Huang S. D. and Aloi J. (1991). The Impact of Using Interactive Video in Teaching General Biology, The American Biology Teacher, 53(5), 281-284.
  • Hynd C., Alvermann D., Qian G., (1997). Preservice Elementary School Teachers’ Conceptual Change about Projectile Motion: Refutation Text, Demonstration, Affective Factors, and Relevance. Science Education, 81, 1-27.
  • Kibuka-Sebitosi, E., (2007). Understanding genetics and inheritance in rural school. Journal of Biological Education, 41(2), 56-61.
  • Lewis, J. (2004). Traits, genes, particles and information: re-visiting students’ understandings of genetics. International Journal of Science Education, 26 (2), 195–206
  • Lewis, J., Driver, R., Leach, J. And Wood-Robinson, C. (1997). Understanding Genetics, ‘Young People’s Understanding of, and Attitudes to, the New Genetics’ project Leeds: University of Leeds, CSSME). ISBN: 0 94421 89 9, pp, 92 .
  • Lewis J., Kattmann U. (2004). Traits, genes, particles and information: re-visiting students’ understandings of genetics. Int. J. Sci. Educ. 26, 195–206.
  • Lewis J., Leach J., Wood-Robinson C. (2000a). What's in a cell?—Young people's understanding of the genetic relationship between cells, within an individual. J. Biol. Educ. 34, 129–132.
  • Lewis, J., Leach, J. & Wood-Robinson, C. (2000b). All in the genes?—Young people’s understanding of the nature of genes. Journal of Biological Education, 34(2), 74-79.
  • Lewis J., Wood-Robinson C. (2000). Genes, chromosomes, cell division and inheritance: do students see any relationship?. International Journal of Science Education 22, 177–195.
  • Malacinski, G.M and Zell P. W. (1996). Manipulating the “invisible”: Learning molecular biology using inexpensive models. The American Biology Teacher, 58(7), 428-432.
  • Marbach-Ad G., Stavy R. (2000). Student's cellular and molecular explanation of genetic phenomena. Journal of Biological Education 34, 200–205.
  • Mintzes, J.J. and Wandersee, J.H. (1998). Research in Science Teaching and Learning: A Human Constructivist View. In J.J., Mintzes, J.H. Wandersee, and J.D. Novak (eds). Teaching Science for Understanding: A Human Constructivist View, San Diego, CA: Academic Press, pp 60-90.
  • Mintzes, J.J. and Wandersee, J.H. and Novak J.D., (2001). Assessing understanding in biology, Journal of Biological Education, 35, 118-123.
  • Nilsson N., Christense H.W., Hartvigsen J., (1996). The interexaminer reliability of measuring passive cervical range of motion. Revisited Journal of Manipulative Physiological Therapeutics, 19, p. 302–304
  • Papastergiou, M. (2009). Digital game-based learning in high school computer science education: Impact on educational effectiveness and student motivation. Computers & Education, 52(1), 1– 12
  • Pekel, F.O. (2005). Investigations of effectiveness of conceptual change approach on understanding of DNA, gene, chromosome concepts. Unpublished PhD dissertation, Ataturk University, Instutitue of Science, Erzurum: Turkey.
  • Pınarbaşı, T., Canpolat N., Bayrakçeken S., Geban Ö., (2006). An Investigation of Effectiveness of Conceptual Change Text-oriented Instruction on Students’ Understanding of Solution Concepts. Research in Science Education, 36, 313-335
  • Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accommodation of a scientific conception. Science Education, 66, 211-227.
  • Rotbain Y., Marbch-Ad G, Stavy R. (2005). Understanding molecular genetics through a drawing- based activity. Journal of Biological Education, 39 (4), 174-178.
  • Schnotz W. (2002). Towards an integrated view of learning from text visual displays. Educational Psychology Review, 14, 101-120.
  • Smith, L. A., and Williams, J. M., (2007). “It’s the X and Y Thing: Cross-Sectional and Longitudinal Changes in Children’s Understanding of Genes”. Research in Science Education, 37, 407–422.
  • Stavy, R. (1991). Using analogy to overcome misconceptions about conversation of matter. Journal of Research in Science Teaching, 28, 305–313.
  • Sungur, S., Tekkaya, C. and Geban, Ö.,(2001). The Contribution of Conceptual Change Texts Accompanied by Concept Mapping to Students' Understanding of Human Circulatory System. School Science and Mathematics, 101, 91-101.
  • Templin A.T., Fetters M.K. (2002). A working model of protein synthesis using legoTM building blocks. The American Biology Teacher, 64(9), 673-678.
  • Thompson, J., & Soyibo, K. (2002). Effects of lecture, teacher demonstrations, discussion and practical work on 10th graders’ attitudes to chemistry and understanding of electrolysis. Research in Science and Technological Education, 20(1), 25-37.
  • Treagust, D. F., Chittleborough, G., & Mamialo, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357–368.
  • Treagust, D. F., Duit, R., Joslin, P. and Lindauer, I. (1992). Science teachers' use of analogies: Observations from classroom practice. International Journal of Science Education, 14, 413–422.
  • Treagust, D.F., Harrison A.G., & Venville G.J., (1996). Using an analogical teaching approach to engender conceptual change. International Journal of Science Education, 18 (2), 213-229.
  • Venville, G., Donovan, J., (2008). How pupils use a model for abstract concepts in genetics. Journal of Biological Education, 43(1), 6-14.
  • Wang J., and Hartley K., (2003). Video Technology as a Support for Teacher Education Reform. Journal of Technology and Teacher Education, 11(1), 105-138.
  • Wood-Robinson C., Lewis J, Leach J., (2000). Young people's understanding of the nature of genetic information in the cells of an organism. Journal of Biological Education, 35(1), 29–36.
  • Yılmaz, D., Tekkaya, C., and Sungur, S., (2011). The Comparative Effects of Prediction/Discussion- Based Learning Cycle, Conceptual Change Text, and Traditional Instructions on Student Understanding of Genetics. International Journal of Science Education 33, 607–628.
  • Yip D. Y., (2001). Promoting the development of a conceptual change model of science instruction in prospective secondary biology teachers. International Journal of Science Education, 23(7), 755- 770.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eğitim Üzerine Çalışmalar
Bölüm Eğitim Bilimleri ve Alan Eğitimi Bilimleri
Yazarlar

Yrd.doç.dr.feyzi Osman Pekel

Prof.dr.ismet Hasenekoğlu

Yayımlanma Tarihi 30 Haziran 2015
Yayımlandığı Sayı Yıl 2015Cilt: 6 Sayı: 2

Kaynak Göster

APA Pekel, Y. O., & Hasenekoğlu, P. (2015). Dynamising conceptual change approach to teach some genetics concepts. E-Uluslararası Eğitim Araştırmaları Dergisi, 6(2), 51-68. https://doi.org/10.19160/e-ijer.39715

Creative Commons Lisansı
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)


[email protected]        http://www.e-ijer.com       Adres: Ege Üniversitesi Eğitim Fakültesi  Bornova/İzmir