Research Article
BibTex RIS Cite

The Relationship Between Teacher Candidates’ Competence in Designing Model-Elicting Activity, Problem-Solving and Problem-Posing Beliefs / Öğretmen Adaylarının Model Oluşturma Etkinliği Tasarlama Yeterliği ile Problem Çözme ve Problem Kurmaya Yönelik İnançları Arasındaki İlişki

Year 2023, Volume: 14 Issue: 4, 108 - 129, 30.08.2023
https://doi.org/10.19160/e-ijer.1280798

Abstract

Bu çalışmanın amacı ortaokul matematik öğretmeni adaylarının Model Oluşturma Etkinliği (MOE) tasarlama yeterlikleri, problem çözmeye yönelik inançları ve problem kurmaya yönelik öz-yeterlik inançları düzeylerinin cinsiyet ve genel akademik not ortalamasına (GANO) göre değişimi ve aralarındaki ilişkileri belirlemektir. Türkiye’de 64 ortaokul matematik öğretmeni adayının katılımıyla tasarladıkları modelleme etkinlikleri MOE yeterliklerine ilişkin “MOE tasarlama prensiplerine uygunluk kriterleri” bağlamında oluşturulmuş bir puanlama anahtarı aracılığı ile değerlendirilmiştir. Diğer yandan öğretmen adaylarının problem çözmeye yönelik inançları için 24 maddeden oluşan bir ölçek ve problem kurmaya yönelik öz-yeterlik inançları için 26 maddelik bir ölçek uygulanmış olup verilen yanıtlar nicel yöntemlerle analiz edilmiştir (tek yönlü çoklu varyans analizi, korelasyon analizi, çoklu regresyon testi). Elde edilen bulgular, öğretmen adaylarının MOE tasarlama yeterliklerinin genelde yüksek düzeyde, problem çözmeye yönelik inançları ve problem kurmaya yönelik öz-yeterlik inançlarının genelde orta düzeyde olduğunu göstermektedir. MOE tasarlama yeterlikleri, problem çözmeye yönelik inançları ve problem kurmaya yönelik öz-yeterlik inançları doğrusal kombinasyonlarının anlamlı bir farklılık göstermediği belirlenmiştir. Ancak öğretmen adaylarının problem çözmeye yönelik inançları ile problem kurmaya yönelik öz-yeterlik inançları arasında pozitif yönde ve orta düzeyde anlamlı bir ilişki olduğu belirlenmiştir. Matematiksel modellemeye yönelik deneyimin matematiksel modelleme yeterliklerini etkilediği sonucuna ulaşan birçok çalışma mevcuttur. Bu nedenle öğretmen adaylarının aldıkları matematiksel modelleme dersinde modelleme problemlerinin kullanılmış olmasının yeterlikleri arttırdığı sonucuna ulaşılmıştır. Matematik öğretmeni adaylarının MOE tasarlama yeterlilikleri yüksek düzeyde olmasına rağmen bu durumun problem çözme ve kurma inançlarıyla ilgili olmadığı belirlenmiştir. Ancak matematiksel modelleme süreci temel olarak bir problem çözme süreci olarak ele alındığından öğretmen adaylarının bu inançlarının MOE tasarım yeterliği ile ilişkili olması beklenmiştir. Bu durumu daha detaylı inceleyebilmek ve altında yatan nedenleri ortaya koyabilmek için öğretmen adayları ile nitel araştırmaların yapılması önerilmektedir.

References

  • Blum, W., & Borromeo-Ferri, R. (2016). Advancing the teaching of mathematical modeling: Research-based concepts and examples. In C. Hirsch & A. Roth McDuffie (Eds.), Mathematical modeling and modeling mathematics (pp. 65–76). Reston, VA: NCTM.
  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects-State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68. https://doi.org/10.1007/BF00302716
  • Bonotto, C. (2013). Artifacts as sources for problem-posing activities. Educational Studies in Mathematics, 83(1), 37–55. https://doi.org/10.1007/s10649-012-9441-7
  • Bonotto, C., & Dal Santo, L. (2015). On the relationship between problem posing, problem solving, and creativity in the primary school. In F. M. Singer, N. F. Ellerton, & J. Cai (Eds), Mathematical Problem Posing (pp. 103-123). NY: Springer.
  • Borromeo-Ferri, R. (2010). On the influence of mathematical thinking styles on learners' modeling behaviour. Journal für Mathematikdidaktik, 31(1), 99-118. https://doi.org/10.1007/s13138-010-0009-8
  • Borromeo-Ferri, R. (2011). Effective mathematical modelling without blockages-A commentary. In: Kaiser, G., Blum, W., Borromeo Ferri, R., Stillman, G. (Eds.) Trends in teaching and learning of mathematical modelling. international perspectives on the teaching and learning of mathematical modelling, Vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0910-2_19
  • Borromeo-Ferri, R. (2014). Mathematical modelling-the teacher’s responsibility. In A. Sanfratello y B. Dickmann (Eds.), Proceedings of conference on mathematical modelling (pp. 26–31). Teachers College of Columbia University.
  • Borromeo-Ferri, R., & Blum, W. (2011). Are integrated thinkers better able to intervene adaptively? – A case study in a mathematical modelling environment. In M. Pytlak, T. Rowland, and E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education. Rzesow, Poland: University of Rzeszow.
  • Brady, C. (2018). Modelling and the representational imagination. ZDM Mathematics Education, 50(1-2), 45-59. https://doi.org/10.1007/s11858-018-0926-4
  • Cai, J. (1998). An investigation of U.S. and Chinese students’ mathematical problem posing and problem solving. Mathematics Education Research Journal, 10, 37- 50. https://doi.org/10.1007/BF03217121
  • Cai, J., & Hwang, S. (2002). Generalized and generative thinking in US and Chinese students' mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21(4), 401–421. https://doi.org/10.1016/S0732-3123(02)00142-6
  • Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem-posing research in mathematics education: Some answered and unanswered questions. In F. M. Singer, N. Ellerton, & J. Cai (Eds.), Mathematical problem posing: From research to efective practice (pp. 3–34). Springer.
  • Caracelli, V. J., & Greene, J. C. (1997). Crafting mixed-method evaluation designs. In J.C. Greene& V. J. Caracelli (Eds.), Advances in mixed- method evaluation: The challenges and benefits of integrating diverse paradigms (pp. 19-32). San Francisco: Jossey-Bass.
  • Chen, L., Dooren, W. V., & Verschaffel, L. (2015). Enhancing the development of Chinese fifth-graders’ problem-posing and problem-solving abilities, beliefs, and attitudes: a design experiment. In F. M. Singer, N. F. Ellerton, ve J. Cai (Eds.), Mathematical problem posing: From research to effective practice (s. 309-329). Springer.
  • Common Core State Standards Initiative. (2010). Common core standards for mathematics. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
  • Creswell, J., & Plano Clark, V. (2007). Designing and conducting mixed methods research. Sage Publications.
  • Deringol, Y. (2018). Examination of problem solving beliefs and problem posing selfefficacy beliefs of prospective classroom teachers. Turkish Journal of Computer and Mathematics Education, 9(1), 31-53. https://doi.org/10.16949/turkbilmat.336386
  • Doerr, H. M. (2006). Teachers’ way of listening and responding to students’ emerging mathematical models. ZDM, 38(3), 255-268. https://doi.org/10.1007/BF02652809
  • Doerr, H. D. (2007). What knowledge do teachers need for teaching mathematics through applications and modelling? In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 69–78). Springer.
  • Dogan, M. F., Ozaltun-Celik, A., & Bukova-Guzel, E. (2021). What is mathematical modeling in terms of mathematics education?. In E. Bukova-Güzel, M. F. Dogan, & A. Ozaltun-Celik (Eds.), A holistic view of mathematical modeling from theory to practice (pp. 3-17). Pegem Academy.
  • Doruk, B. K. (2019). Analysis of fifth grade mathematics applications course teaching material activities based on model-eliciting design principles. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 13(2), 879-908. https://doi.org/10.17522/balikesirnef.542711
  • English, L., D. (1997). The development of fifth-grade children’s problem-posing abilities. Educational Studies in Mathematics, 34(3), 183-217. https://doi.org/10.1023/A:1002963618035
  • English, L. D., Jones, G. A., Bartolini Bussi, M. G., Lesh, R., Tirosh, D., & Sriraman, B. (2008). Moving forward in international mathematics education research. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education: Directions for the 21st century (pp. 872–905). NY: Routledge.
  • Greene, J. C. (2007). Mixed methods in social inquiry. Jossey-Bass.
  • Haciomeroglu, G. (2011). Turkish adaptation of beliefs about mathematical problem solving instrument. Dicle University Journal of Ziya Gokalp Education Faculty, 17, 119– 132. Retrieved from https://dergipark.org.tr/tr/pub/zgefd/issue/47948/606657
  • Han, S., & Kim, H. (2020). Components of mathematical problem solving competence and mediation effects of instructional strategies for mathematical modeling. Education and Science, 45(202), 93-111. http://dx.doi.org/10.15390/EB.2020.7386
  • Kaiser, G., & Maaß, K. (2007). Modelling in lower secondary mathematics classroom-Problems and opportunities. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 99–108). Springer.
  • Kayan, F. (2007). A study on preservice elementary mathematics teachers’ mathematical problem solving beliefs (Master’s thesis). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Kayan, F., & Cakiroglu, E. (2008). Preservice elementary mathematics teachers’ mathematical problem solving beliefs. Hacettepe University Journal of Education, 35, 218-226. Retrieved from http://www.efdergi.hacettepe.edu.tr/shw_artcl-555.html
  • Kelly, A. E., Lesh, R. A., & Baec, J. Y. (2008). Handbook of design research methods in education: Innovations in science, technology, engineering, and mathematics learning and teaching. NY: Routledge.
  • Kilic, C., & Incikabi, L. (2013). A scale development study related to teachers’ problem posing self efficacy beliefs. Dumlupınar University Journal of Social Sciences, 35, 223-234. Retrieved from https://dergipark.org.tr/tr/pub/dpusbe/issue/4777/65828
  • Kilpatrick, J. (1987). Problem formulating: Where do good problems come from? In A. Shoenfeld (Ed.), Cognitive science and mathematics education (1st ed., pp. 123–148). NJ: Lawrance Erlbaum Associates.
  • Kim, I. K. (2012). Comparison and analysis among mathematical modeling, mathematization, and problem solving. The Korean Journal for History of Mathematics, 25(2), 71-95.
  • Kloosterman, P., & Stage, F. K. (1992). Measuring beliefs about mathematical problem solving. School Science and Mathematics, 92(3), 109–115.
  • Koyuncu, I., Guzeller, C. O., & Akyuz, D. (2016). The development of a self-efficacy scale for mathematical modeling competencies. International Journal of Assessment Tools in Education, 4(1), 19-36. https://doi.org/10.21449/ijate.256552
  • Kula-Unver, S., Hidiroglu, C. N., Tekin-Dede, A., & Bukova-Guzel, E. (2018). Factors revealed while posing mathematical modelling problems by Mathematics student teachers. European Journal of Educational Research, 7(4), 941-952. https://do.org/10.12973/eu-jer.7.4.941
  • Lavy, l., & Bershadsky, I. (2003). Problem posing via "What if not?" strategy in solid geometry: A case study. The Journal of Mathematical Behavior, 22(4), 369–387. https://doi.org/10.1016/j.jmathb.2003.09.007
  • Lesh, R., & Doerr, H. (2003). Foundations of a model and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: A models and modelling perspective on teaching, learning, and problem solving in mathematics education (pp. 3-33). Lawrance Erbaum Associates.
  • Lesh, R.A., & Zawojewski, J. (2007). Problem solving and modeling. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A Project of the national council of teachers of mathematics. Information Age Publishing.
  • Lowe, J., Cooper, T., & Carter, M. (2018). Mathematical modelling in the junior secondary years: An approach incorporating mathematical technology. Australian Mathematics Teacher, 74(1). Retrieved from https://files.eric.ed.gov/fulltext/EJ1175357.pdf
  • Lowrie, T. (2002). Designing a framework for problem posing: Young children generating open-ended tasks. Contemporary Issues in Early Childhood, 3(3), 354-64.
  • Mkomange, W. C., & Ajagbe, M. A. (2012). Prospective secondary teachers’ beliefs about mathematical problem solving. IRACST- International Journal of Research in Management & Technology (IJRMT), 2(2), 154-163. Retrieved from https://core.ac.uk/download/pdf/32226048.pdf
  • Mousoulides, N. G., & English, L. D. (2008) Modeling with data in Cypriot and Australian primary classrooms. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano & A. Sepúlveda (Eds.), Proceedings of the Joint Meeting of PME 32 and PME-NA (Vol. 3, pp. 423-430). Cinvestav-UMSNH.
  • National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards for school mathematics. Reston, Va. NCTM.
  • Ng, K. E. D. (2013). Teacher readiness in mathematical modelling: Are there differences between preservice and in-service teachers? In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 339-348). Springer. https://doi.org/10. 1007/978-94- 007-6540-5_28
  • Ozer-Keskin, Ö. (2008). A research of developing the pre-service secondary mathematics teachers’ mathematical modelling performance (Doctoral dissertation). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Peng, A., Cao, L., & Yu, B. (2020). Reciprocal learning in mathematics problem posing and problem solving: An interactive study between Canadian and Chinese elementary school students. Eurasia Journal of Mathematics, Science and Technology Education, 16(12), em1913. https://doi.org/10.29333/ejmste/9130
  • Pollak, H. O. (2012). Introduction -what is mathematical modeling?. In H. Gould, D. R. Murray ve A. Sanfratello (Ed.), Mathematical modeling handbook (pp. viii-xi). The Consortium for Mathematics and Its Applications.
  • Schunk, D. H., & Pajares, F. (2009). Self-efficacy theory. In K. R. Wenzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 35-53). Routledge/Taylor & Francis Group.
  • Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28.
  • Silver, E. A., & Cai, J. (1996). An analysis of arithmetic problem posing by middle school students. Journal for Research in Mathematics Education, 27(5), 521-539. https://doi.org/10.2307/749846
  • Stillman, G. A. (2019). State of the art on modelling in matehmatics education-Lines of inquiry. In G. A. Stillman, & J. P. Brown (Eds.), Lines of inquiry in mathematical modelling research in education (pp.1-20). Springer. https://doi.org/10.1007/978-3-030-14931-4_1
  • Tall, D. (2002). Advanced mathematical thinking. Kluwer Academic Publishers.
  • Unlu, M., & Sarpkaya-Aktas. G. (2016). Pre-service elementary mathematics teachers’ self-efficacy beliefs about problem posing and beliefs about problem solving. Bolu Abant Izzet Baysal University Journal of Faculty of Education, 16(4), 2040-2059. Retrieved from https://dergipark.org.tr/tr/pub/aibuefd/issue/28550/304610
  • Yavuz, G., & Erbay, H. N. (2015). The analysis of pre-service teachers’ beliefs about mathematical problem solving. Procedia-Social and Behavioral Sciences, 174, 2687-2692. https://doi.org/10.1016/j.sbspro.2015.01.953
  • Yildirim, A., & Simsek, H. (2011). Qualitative research methods in the social sciences (8th ed.). Seckin Publishing.

Öğretmen Adaylarının Model Oluşturma Etkinliği Tasarlama Yeterliği ile Problem Çözme ve Problem Kurmaya Yönelik İnançları Arasındaki İlişki / The Relationship Between Teacher Candidates’ Competence in Designing Model-Elicting Activity, Problem-Solving and Problem-Posing Beliefs

Year 2023, Volume: 14 Issue: 4, 108 - 129, 30.08.2023
https://doi.org/10.19160/e-ijer.1280798

Abstract

Bu çalışmanın amacı ortaokul matematik öğretmeni adaylarının Model Oluşturma Etkinliği (MOE) tasarlama yeterlikleri, problem çözmeye yönelik inançları ve problem kurmaya yönelik öz-yeterlik inançları düzeylerinin cinsiyet ve genel akademik not ortalamasına (GANO) göre değişimi ve aralarındaki ilişkileri belirlemektir. Türkiye’de 64 ortaokul matematik öğretmeni adayının katılımıyla tasarladıkları modelleme etkinlikleri MOE yeterliklerine ilişkin “MOE tasarlama prensiplerine uygunluk kriterleri” bağlamında oluşturulmuş bir puanlama anahtarı aracılığı ile değerlendirilmiştir. Diğer yandan öğretmen adaylarının problem çözmeye yönelik inançları için 24 maddeden oluşan bir ölçek ve problem kurmaya yönelik öz-yeterlik inançları için 26 maddelik bir ölçek uygulanmış olup verilen yanıtlar nicel yöntemlerle analiz edilmiştir (tek yönlü çoklu varyans analizi, korelasyon analizi, çoklu regresyon testi). Elde edilen bulgular, öğretmen adaylarının MOE tasarlama yeterliklerinin genelde yüksek düzeyde, problem çözmeye yönelik inançları ve problem kurmaya yönelik öz-yeterlik inançlarının genelde orta düzeyde olduğunu göstermektedir. Modelleme yeterliliklerinin modelleme problemleri üzerine çalıştıkça geliştiğini ve matematiksel modellemeye yönelik deneyimin matematiksel modelleme yeterliklerini etkilediği sonucuna ulaşan çalışmalardan yola çıkarak öğretmen adaylarının aldıkları matematiksel modelleme dersinde matematiksel problemlerin çözülmesi ve bu çözümlerin öğretilmesi için modelleme problemlerinin kullanılmış olmasının bu duruma etkili olduğu sonucuna ulaşılmıştır. MOE tasarlama yeterlikleri, problem çözmeye yönelik inançları ve problem kurmaya yönelik öz-yeterlik inançları doğrusal kombinasyonlarının anlamlı bir farklılık göstermediğini ancak öğretmen adaylarının problem çözmeye yönelik inançları ile problem kurmaya yönelik öz-yeterlik inançları arasında pozitif yönde ve orta düzeyde anlamlı bir ilişki olduğu belirlenmiştir. Öğretmen adaylarının problem çözme ve kurmaya yönelik inançlarının MOE tasarlama yeterlikleri ile ilişkinin olmaması onların daha önceki rutin matematik problem çözmeye yönelik deneyimlerinin daha ağırlıklı olmasından dolayı oluştuğu düşünülmektedir. Diğer yandan matematiksel modelleme süreci temel olarak bir problem çözme süreci olarak ele alındığından öğretmen adaylarının bu inançlarının MEA tasarım yeterliği ile ilişkili olması beklenmiştir. Bu durumu daha detaylı inceleyebilmek ve altında yatan nedenleri ortaya koyabilmek için öğretmen adayları ile nitel araştırmaların yapılması önem arz etmektedir.

References

  • Blum, W., & Borromeo-Ferri, R. (2016). Advancing the teaching of mathematical modeling: Research-based concepts and examples. In C. Hirsch & A. Roth McDuffie (Eds.), Mathematical modeling and modeling mathematics (pp. 65–76). Reston, VA: NCTM.
  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects-State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68. https://doi.org/10.1007/BF00302716
  • Bonotto, C. (2013). Artifacts as sources for problem-posing activities. Educational Studies in Mathematics, 83(1), 37–55. https://doi.org/10.1007/s10649-012-9441-7
  • Bonotto, C., & Dal Santo, L. (2015). On the relationship between problem posing, problem solving, and creativity in the primary school. In F. M. Singer, N. F. Ellerton, & J. Cai (Eds), Mathematical Problem Posing (pp. 103-123). NY: Springer.
  • Borromeo-Ferri, R. (2010). On the influence of mathematical thinking styles on learners' modeling behaviour. Journal für Mathematikdidaktik, 31(1), 99-118. https://doi.org/10.1007/s13138-010-0009-8
  • Borromeo-Ferri, R. (2011). Effective mathematical modelling without blockages-A commentary. In: Kaiser, G., Blum, W., Borromeo Ferri, R., Stillman, G. (Eds.) Trends in teaching and learning of mathematical modelling. international perspectives on the teaching and learning of mathematical modelling, Vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0910-2_19
  • Borromeo-Ferri, R. (2014). Mathematical modelling-the teacher’s responsibility. In A. Sanfratello y B. Dickmann (Eds.), Proceedings of conference on mathematical modelling (pp. 26–31). Teachers College of Columbia University.
  • Borromeo-Ferri, R., & Blum, W. (2011). Are integrated thinkers better able to intervene adaptively? – A case study in a mathematical modelling environment. In M. Pytlak, T. Rowland, and E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research in Mathematics Education. Rzesow, Poland: University of Rzeszow.
  • Brady, C. (2018). Modelling and the representational imagination. ZDM Mathematics Education, 50(1-2), 45-59. https://doi.org/10.1007/s11858-018-0926-4
  • Cai, J. (1998). An investigation of U.S. and Chinese students’ mathematical problem posing and problem solving. Mathematics Education Research Journal, 10, 37- 50. https://doi.org/10.1007/BF03217121
  • Cai, J., & Hwang, S. (2002). Generalized and generative thinking in US and Chinese students' mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21(4), 401–421. https://doi.org/10.1016/S0732-3123(02)00142-6
  • Cai, J., Hwang, S., Jiang, C., & Silber, S. (2015). Problem-posing research in mathematics education: Some answered and unanswered questions. In F. M. Singer, N. Ellerton, & J. Cai (Eds.), Mathematical problem posing: From research to efective practice (pp. 3–34). Springer.
  • Caracelli, V. J., & Greene, J. C. (1997). Crafting mixed-method evaluation designs. In J.C. Greene& V. J. Caracelli (Eds.), Advances in mixed- method evaluation: The challenges and benefits of integrating diverse paradigms (pp. 19-32). San Francisco: Jossey-Bass.
  • Chen, L., Dooren, W. V., & Verschaffel, L. (2015). Enhancing the development of Chinese fifth-graders’ problem-posing and problem-solving abilities, beliefs, and attitudes: a design experiment. In F. M. Singer, N. F. Ellerton, ve J. Cai (Eds.), Mathematical problem posing: From research to effective practice (s. 309-329). Springer.
  • Common Core State Standards Initiative. (2010). Common core standards for mathematics. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
  • Creswell, J., & Plano Clark, V. (2007). Designing and conducting mixed methods research. Sage Publications.
  • Deringol, Y. (2018). Examination of problem solving beliefs and problem posing selfefficacy beliefs of prospective classroom teachers. Turkish Journal of Computer and Mathematics Education, 9(1), 31-53. https://doi.org/10.16949/turkbilmat.336386
  • Doerr, H. M. (2006). Teachers’ way of listening and responding to students’ emerging mathematical models. ZDM, 38(3), 255-268. https://doi.org/10.1007/BF02652809
  • Doerr, H. D. (2007). What knowledge do teachers need for teaching mathematics through applications and modelling? In W. Blum, P. L. Galbraith, H. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education: The 14th ICMI study (pp. 69–78). Springer.
  • Dogan, M. F., Ozaltun-Celik, A., & Bukova-Guzel, E. (2021). What is mathematical modeling in terms of mathematics education?. In E. Bukova-Güzel, M. F. Dogan, & A. Ozaltun-Celik (Eds.), A holistic view of mathematical modeling from theory to practice (pp. 3-17). Pegem Academy.
  • Doruk, B. K. (2019). Analysis of fifth grade mathematics applications course teaching material activities based on model-eliciting design principles. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 13(2), 879-908. https://doi.org/10.17522/balikesirnef.542711
  • English, L., D. (1997). The development of fifth-grade children’s problem-posing abilities. Educational Studies in Mathematics, 34(3), 183-217. https://doi.org/10.1023/A:1002963618035
  • English, L. D., Jones, G. A., Bartolini Bussi, M. G., Lesh, R., Tirosh, D., & Sriraman, B. (2008). Moving forward in international mathematics education research. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education: Directions for the 21st century (pp. 872–905). NY: Routledge.
  • Greene, J. C. (2007). Mixed methods in social inquiry. Jossey-Bass.
  • Haciomeroglu, G. (2011). Turkish adaptation of beliefs about mathematical problem solving instrument. Dicle University Journal of Ziya Gokalp Education Faculty, 17, 119– 132. Retrieved from https://dergipark.org.tr/tr/pub/zgefd/issue/47948/606657
  • Han, S., & Kim, H. (2020). Components of mathematical problem solving competence and mediation effects of instructional strategies for mathematical modeling. Education and Science, 45(202), 93-111. http://dx.doi.org/10.15390/EB.2020.7386
  • Kaiser, G., & Maaß, K. (2007). Modelling in lower secondary mathematics classroom-Problems and opportunities. In W. Blum et al. (Eds.), Modelling and applications in mathematics education (pp. 99–108). Springer.
  • Kayan, F. (2007). A study on preservice elementary mathematics teachers’ mathematical problem solving beliefs (Master’s thesis). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Kayan, F., & Cakiroglu, E. (2008). Preservice elementary mathematics teachers’ mathematical problem solving beliefs. Hacettepe University Journal of Education, 35, 218-226. Retrieved from http://www.efdergi.hacettepe.edu.tr/shw_artcl-555.html
  • Kelly, A. E., Lesh, R. A., & Baec, J. Y. (2008). Handbook of design research methods in education: Innovations in science, technology, engineering, and mathematics learning and teaching. NY: Routledge.
  • Kilic, C., & Incikabi, L. (2013). A scale development study related to teachers’ problem posing self efficacy beliefs. Dumlupınar University Journal of Social Sciences, 35, 223-234. Retrieved from https://dergipark.org.tr/tr/pub/dpusbe/issue/4777/65828
  • Kilpatrick, J. (1987). Problem formulating: Where do good problems come from? In A. Shoenfeld (Ed.), Cognitive science and mathematics education (1st ed., pp. 123–148). NJ: Lawrance Erlbaum Associates.
  • Kim, I. K. (2012). Comparison and analysis among mathematical modeling, mathematization, and problem solving. The Korean Journal for History of Mathematics, 25(2), 71-95.
  • Kloosterman, P., & Stage, F. K. (1992). Measuring beliefs about mathematical problem solving. School Science and Mathematics, 92(3), 109–115.
  • Koyuncu, I., Guzeller, C. O., & Akyuz, D. (2016). The development of a self-efficacy scale for mathematical modeling competencies. International Journal of Assessment Tools in Education, 4(1), 19-36. https://doi.org/10.21449/ijate.256552
  • Kula-Unver, S., Hidiroglu, C. N., Tekin-Dede, A., & Bukova-Guzel, E. (2018). Factors revealed while posing mathematical modelling problems by Mathematics student teachers. European Journal of Educational Research, 7(4), 941-952. https://do.org/10.12973/eu-jer.7.4.941
  • Lavy, l., & Bershadsky, I. (2003). Problem posing via "What if not?" strategy in solid geometry: A case study. The Journal of Mathematical Behavior, 22(4), 369–387. https://doi.org/10.1016/j.jmathb.2003.09.007
  • Lesh, R., & Doerr, H. (2003). Foundations of a model and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: A models and modelling perspective on teaching, learning, and problem solving in mathematics education (pp. 3-33). Lawrance Erbaum Associates.
  • Lesh, R.A., & Zawojewski, J. (2007). Problem solving and modeling. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A Project of the national council of teachers of mathematics. Information Age Publishing.
  • Lowe, J., Cooper, T., & Carter, M. (2018). Mathematical modelling in the junior secondary years: An approach incorporating mathematical technology. Australian Mathematics Teacher, 74(1). Retrieved from https://files.eric.ed.gov/fulltext/EJ1175357.pdf
  • Lowrie, T. (2002). Designing a framework for problem posing: Young children generating open-ended tasks. Contemporary Issues in Early Childhood, 3(3), 354-64.
  • Mkomange, W. C., & Ajagbe, M. A. (2012). Prospective secondary teachers’ beliefs about mathematical problem solving. IRACST- International Journal of Research in Management & Technology (IJRMT), 2(2), 154-163. Retrieved from https://core.ac.uk/download/pdf/32226048.pdf
  • Mousoulides, N. G., & English, L. D. (2008) Modeling with data in Cypriot and Australian primary classrooms. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano & A. Sepúlveda (Eds.), Proceedings of the Joint Meeting of PME 32 and PME-NA (Vol. 3, pp. 423-430). Cinvestav-UMSNH.
  • National Council of Teachers of Mathematics [NCTM] (2000). Principles and standards for school mathematics. Reston, Va. NCTM.
  • Ng, K. E. D. (2013). Teacher readiness in mathematical modelling: Are there differences between preservice and in-service teachers? In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 339-348). Springer. https://doi.org/10. 1007/978-94- 007-6540-5_28
  • Ozer-Keskin, Ö. (2008). A research of developing the pre-service secondary mathematics teachers’ mathematical modelling performance (Doctoral dissertation). Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Peng, A., Cao, L., & Yu, B. (2020). Reciprocal learning in mathematics problem posing and problem solving: An interactive study between Canadian and Chinese elementary school students. Eurasia Journal of Mathematics, Science and Technology Education, 16(12), em1913. https://doi.org/10.29333/ejmste/9130
  • Pollak, H. O. (2012). Introduction -what is mathematical modeling?. In H. Gould, D. R. Murray ve A. Sanfratello (Ed.), Mathematical modeling handbook (pp. viii-xi). The Consortium for Mathematics and Its Applications.
  • Schunk, D. H., & Pajares, F. (2009). Self-efficacy theory. In K. R. Wenzel & A. Wigfield (Eds.), Handbook of motivation at school (pp. 35-53). Routledge/Taylor & Francis Group.
  • Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28.
  • Silver, E. A., & Cai, J. (1996). An analysis of arithmetic problem posing by middle school students. Journal for Research in Mathematics Education, 27(5), 521-539. https://doi.org/10.2307/749846
  • Stillman, G. A. (2019). State of the art on modelling in matehmatics education-Lines of inquiry. In G. A. Stillman, & J. P. Brown (Eds.), Lines of inquiry in mathematical modelling research in education (pp.1-20). Springer. https://doi.org/10.1007/978-3-030-14931-4_1
  • Tall, D. (2002). Advanced mathematical thinking. Kluwer Academic Publishers.
  • Unlu, M., & Sarpkaya-Aktas. G. (2016). Pre-service elementary mathematics teachers’ self-efficacy beliefs about problem posing and beliefs about problem solving. Bolu Abant Izzet Baysal University Journal of Faculty of Education, 16(4), 2040-2059. Retrieved from https://dergipark.org.tr/tr/pub/aibuefd/issue/28550/304610
  • Yavuz, G., & Erbay, H. N. (2015). The analysis of pre-service teachers’ beliefs about mathematical problem solving. Procedia-Social and Behavioral Sciences, 174, 2687-2692. https://doi.org/10.1016/j.sbspro.2015.01.953
  • Yildirim, A., & Simsek, H. (2011). Qualitative research methods in the social sciences (8th ed.). Seckin Publishing.
There are 56 citations in total.

Details

Primary Language English
Subjects Studies on Education
Journal Section Educational Sciences and Sciences of Field Education
Authors

Demet Baran Bulut 0000-0003-1085-7342

Publication Date August 30, 2023
Published in Issue Year 2023Volume: 14 Issue: 4

Cite

APA Baran Bulut, D. (2023). The Relationship Between Teacher Candidates’ Competence in Designing Model-Elicting Activity, Problem-Solving and Problem-Posing Beliefs / Öğretmen Adaylarının Model Oluşturma Etkinliği Tasarlama Yeterliği ile Problem Çözme ve Problem Kurmaya Yönelik İnançları Arasındaki İlişki. E-Uluslararası Eğitim Araştırmaları Dergisi, 14(4), 108-129. https://doi.org/10.19160/e-ijer.1280798

Creative Commons Lisansı
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)


[email protected]                http://www.e-ijer.com    Address: Ege University Faculty of Education İzmir/Türkiye