Araştırma Makalesi
BibTex RIS Kaynak Göster

Invar FeNi Alaşımında Martensitik Faz Dönüşümlerinin Moleküler Dinamik Simülasyon Yöntemi ile Araştırılması

Yıl 2018, Cilt: 8 Sayı: 1, 7 - 13, 31.01.2018

Öz

Bu
çalışmada, invar Fe64Ni36 alaşımında sıcaklığa bağlı
martensitik faz dönüşümleri Moleküler Dinamik Simulasyon (MDS) yöntemiyle
araştırılmıştır. Atomlararası etkileşimler Gömülmüş atom yönteminin Sutton-
Chen versiyonu kullanılarak modellenmiştir. Martensitik faz dönüşümlerini
belirlemek için, model sistemin sıcaklığa bağlı enerji ve hacim değişimi
incelenmiştir. Yapısal karakterizasyon radyal dağılım fonksiyonu (RDF) ve yer
değiştirmenin kare ortalaması (MSD) kullanılarak yapılmıştır. Elde edilen
termodinamik ve yapısal veriler değerlendirilerek, invar Fe64Ni36
ikili alaşım sisteminin martensitik faz dönüşümü sergilediği gözlenmiştir.
    

Kaynakça

  • [1] Guo Y.F., Wang Y. S., Zhao D. L., Wu W. P., 2007. Mechanisms of martensitic phase transformations in body-centered cubic structural metals and alloys: Molecular dynamics simulations, Acta Materialia, 55: 6634–6641.
  • [2] Engin C., Urbassek H. M., 2008. Molecular-dynamics investigation of the fcc- bcc phase transformation in Fe. Computational Materials Science 41: 297–304.
  • [3] Acet M., Schneider T., Wasserman E.F.,1995. Magnetic Aspects of Martensitic Transformation in FeNi Alloys, Journal De Physique IV, (5), C2-105.
  • [4] Danil’chenko V. E., Delidona R. N., Kositsinab I. I., Saragadze V. V., 2010. Martensitic Transformation
in an Iron–Nickel Melt Quenched Alloy. The Physics of Metals and Metallography, 111 (3): 253-257.
  • [5] Meng L. J., Peng X. Y., Tang C., Zhang K. W., Stocks G.M., 2010. A quasicore-shell structure of FeCo and FeNi nanoparticles. Journal Of Applıed Physıcs 108(10), (104314) 1-5.
  • [6] Howald R. A., 2002. The Thermodynamics of Tetrataenite and Awaruite: A Review of the Fe-Ni Phase Diagram. Metallurgical and Materials Transactions A, (34A), 1759-1769.
  • [7] Meyer R., Entel, P., 1998. Martensit- Austenit Transition and Phonon Dispersion Curves of Fe1-xNix Studied by Moleculer Dynamics simulations, Physical. Review B ( 57, 9), 5140-5147.
  • [8] Pedro Gorriaa, David Martínez-Blancob, Jesús A. Blancoa, Ronald I. Smithc, 2010. Neutron powder thermo-diffraction in mechanically alloyed Fe64Ni36 invar alloy. Journal of Alloys and Compounds, 495, 495–498.
  • [9] Grujicic M., Dang, P., 1995. Computer simulation of martensitic transformation in Fe-Ni face-centerd cubic alloys. Materials Science and Engineering A, 201, 194-204.
  • [10] Abrikosov I. A., Kissavos A. E., Liot F., Alling B., Simak S. I., Peil, O. Ruban A. V., 2007. Competition Between Magnetic Structures In The Fe Rich Fcc FeNi Alloys. Physical Review B 76, 014434 (1-14).
  • [11] Danil’chenko, V. E., Delidon, R. N., Kositsina, I. I., Saragadze, V. V. 2011. Martensitic transformation in an iron-nickel melt-quenched alloy. The Physics of Metals and Metallography, 111(3), 253–257.
  • [12] Kazanc S., Ozgen S., Adiguzel O., 2003. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B, 334: 375–381.
  • [13] Daw, M.S., Baskes
 M. I., 1983. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical Review letters 50(17), 1285-1288.
  • [14] Daw, M.S., Baskes, M.I.,1984. Embedded- atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, (29), 6443-6453.
  • [15] Daw M.S.,. Foiles S.M., Baskes M.I., 1993. The Embedded Atom Method: A Review of theory and applications. Materials. Science Reports. (9) 250.
  • [16] Kazanç, S., Özgen, S., 2004. The Changes of barrier energy in fcc→bcc phase transformation by shear stresses. Gazi Üniversitesi Fen Bilimleri Enstitüsü Dergisi 17(2), 35-42.
  • [17] Meyer R., Entel, P., 1995. Molecular Dynamics Study of Iron- Nickel Alloys, Journal De Physique IV, (5), C2, 123- 128.
  • [18] Kadau, K., Entel, P., Lomdahl, P.S., 2002. Molecular Dynamics Study of Martensitic Transformations in Sitered Fe-Ni Nanoparticles. Computer Physics Communications, (147), 126-129.
  • [19] Tatar, C., Kazanç, S., 2012. Investigation of the effect of pressure on thermodynamic properties and thermoelastic phase transformation of CuAlNi Alloys: A Molecular Dynamics Study, Current Applied Physics (12) 98-104.
  • [20] Kazanç, S., Özgen, S., 2008, Thermal and Pressure Induced Martensitic Phase Transformation in a Ni- Al Alloy Modelled by Sutton-Chen Embedded Atom Method, Molecular Simulation (34-3), 251-257.
  • [21] Bonny, G., Passianot, R.C., Malerba, L., 2008. Fe-Ni many-body potential for metalurgical applications, Modelling and Simulation in Materials Science and Engineering 17, 025010.
  • [22] Owen, E. A., Yates, E. L., Sully, A.H., 1937. An X ray Investigation of Pure Iron- Nickel Alloys. Part 4: The Variation of Lattice parameter with Composition. Proceedings of the Physical Society, (49- 3), 315-322.
  • [23] Rahman, A. 1964. Correlations in the Motion of Atoms in Liquid argon. Physical Review B (136), 405-411.
  • [24] Li, H., Wang, G., Ding, F., Wang, J., Shen, W., 2001. Molecular Dynamics Computational of Clusters Liquid Fe-Al Alloy. Physics Letters A (280), 325-332.
  • [25] Leach, A. R., 2001. Molecular Modelling Principles and Applications. Pearson Education Limited, 744p. Great Britain.
  • [26] Bhattacharya, K., Conti, S., Zanzotto, G., Zimmer, J., 2004. Crystal Symmetry and the reversibility of Martensitic Transformation. Letter to Nature (428), 55-59.
  • [27] Martienssen, W., Warlimont, H. (Ed.), 2005. Springer Handbook of Condensed Matter and Materials Data. Springer, Würzburg-Germany, 1120p.
Yıl 2018, Cilt: 8 Sayı: 1, 7 - 13, 31.01.2018

Öz

Kaynakça

  • [1] Guo Y.F., Wang Y. S., Zhao D. L., Wu W. P., 2007. Mechanisms of martensitic phase transformations in body-centered cubic structural metals and alloys: Molecular dynamics simulations, Acta Materialia, 55: 6634–6641.
  • [2] Engin C., Urbassek H. M., 2008. Molecular-dynamics investigation of the fcc- bcc phase transformation in Fe. Computational Materials Science 41: 297–304.
  • [3] Acet M., Schneider T., Wasserman E.F.,1995. Magnetic Aspects of Martensitic Transformation in FeNi Alloys, Journal De Physique IV, (5), C2-105.
  • [4] Danil’chenko V. E., Delidona R. N., Kositsinab I. I., Saragadze V. V., 2010. Martensitic Transformation
in an Iron–Nickel Melt Quenched Alloy. The Physics of Metals and Metallography, 111 (3): 253-257.
  • [5] Meng L. J., Peng X. Y., Tang C., Zhang K. W., Stocks G.M., 2010. A quasicore-shell structure of FeCo and FeNi nanoparticles. Journal Of Applıed Physıcs 108(10), (104314) 1-5.
  • [6] Howald R. A., 2002. The Thermodynamics of Tetrataenite and Awaruite: A Review of the Fe-Ni Phase Diagram. Metallurgical and Materials Transactions A, (34A), 1759-1769.
  • [7] Meyer R., Entel, P., 1998. Martensit- Austenit Transition and Phonon Dispersion Curves of Fe1-xNix Studied by Moleculer Dynamics simulations, Physical. Review B ( 57, 9), 5140-5147.
  • [8] Pedro Gorriaa, David Martínez-Blancob, Jesús A. Blancoa, Ronald I. Smithc, 2010. Neutron powder thermo-diffraction in mechanically alloyed Fe64Ni36 invar alloy. Journal of Alloys and Compounds, 495, 495–498.
  • [9] Grujicic M., Dang, P., 1995. Computer simulation of martensitic transformation in Fe-Ni face-centerd cubic alloys. Materials Science and Engineering A, 201, 194-204.
  • [10] Abrikosov I. A., Kissavos A. E., Liot F., Alling B., Simak S. I., Peil, O. Ruban A. V., 2007. Competition Between Magnetic Structures In The Fe Rich Fcc FeNi Alloys. Physical Review B 76, 014434 (1-14).
  • [11] Danil’chenko, V. E., Delidon, R. N., Kositsina, I. I., Saragadze, V. V. 2011. Martensitic transformation in an iron-nickel melt-quenched alloy. The Physics of Metals and Metallography, 111(3), 253–257.
  • [12] Kazanc S., Ozgen S., Adiguzel O., 2003. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B, 334: 375–381.
  • [13] Daw, M.S., Baskes
 M. I., 1983. Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Physical Review letters 50(17), 1285-1288.
  • [14] Daw, M.S., Baskes, M.I.,1984. Embedded- atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, (29), 6443-6453.
  • [15] Daw M.S.,. Foiles S.M., Baskes M.I., 1993. The Embedded Atom Method: A Review of theory and applications. Materials. Science Reports. (9) 250.
  • [16] Kazanç, S., Özgen, S., 2004. The Changes of barrier energy in fcc→bcc phase transformation by shear stresses. Gazi Üniversitesi Fen Bilimleri Enstitüsü Dergisi 17(2), 35-42.
  • [17] Meyer R., Entel, P., 1995. Molecular Dynamics Study of Iron- Nickel Alloys, Journal De Physique IV, (5), C2, 123- 128.
  • [18] Kadau, K., Entel, P., Lomdahl, P.S., 2002. Molecular Dynamics Study of Martensitic Transformations in Sitered Fe-Ni Nanoparticles. Computer Physics Communications, (147), 126-129.
  • [19] Tatar, C., Kazanç, S., 2012. Investigation of the effect of pressure on thermodynamic properties and thermoelastic phase transformation of CuAlNi Alloys: A Molecular Dynamics Study, Current Applied Physics (12) 98-104.
  • [20] Kazanç, S., Özgen, S., 2008, Thermal and Pressure Induced Martensitic Phase Transformation in a Ni- Al Alloy Modelled by Sutton-Chen Embedded Atom Method, Molecular Simulation (34-3), 251-257.
  • [21] Bonny, G., Passianot, R.C., Malerba, L., 2008. Fe-Ni many-body potential for metalurgical applications, Modelling and Simulation in Materials Science and Engineering 17, 025010.
  • [22] Owen, E. A., Yates, E. L., Sully, A.H., 1937. An X ray Investigation of Pure Iron- Nickel Alloys. Part 4: The Variation of Lattice parameter with Composition. Proceedings of the Physical Society, (49- 3), 315-322.
  • [23] Rahman, A. 1964. Correlations in the Motion of Atoms in Liquid argon. Physical Review B (136), 405-411.
  • [24] Li, H., Wang, G., Ding, F., Wang, J., Shen, W., 2001. Molecular Dynamics Computational of Clusters Liquid Fe-Al Alloy. Physics Letters A (280), 325-332.
  • [25] Leach, A. R., 2001. Molecular Modelling Principles and Applications. Pearson Education Limited, 744p. Great Britain.
  • [26] Bhattacharya, K., Conti, S., Zanzotto, G., Zimmer, J., 2004. Crystal Symmetry and the reversibility of Martensitic Transformation. Letter to Nature (428), 55-59.
  • [27] Martienssen, W., Warlimont, H. (Ed.), 2005. Springer Handbook of Condensed Matter and Materials Data. Springer, Würzburg-Germany, 1120p.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Eşe Akpınar

Seyfettin Çakmak Bu kişi benim

Yayımlanma Tarihi 31 Ocak 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 1

Kaynak Göster

APA Akpınar, E., & Çakmak, S. (2018). Invar FeNi Alaşımında Martensitik Faz Dönüşümlerinin Moleküler Dinamik Simülasyon Yöntemi ile Araştırılması. Teknik Bilimler Dergisi, 8(1), 7-13.