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Abstract

A brief explication of the implementation of the Gibbs sampling method via rejection sampling to obtain
Bayesian estimates of difficulty and ability parameters under the Rasch model is presented. The Gibbs sampling
method via rejection sampling was used in conjunction with the computer program OpenBUGS. Examples that
compared the estimation method with another Gibbs sampling method via data augmentation as well as
conditional, marginal, and joint maximum likelihood estimation methods are presented using empirical data sets.
The effects of prior specifications on the difficulty and ability estimates are illustrated with the empirical data
sets. A discussion is presented for related issues of Bayesian estimation in item response theory.
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INTRODUCTION

For the one-parameter logistic Rasch model (Rasch, 1980) many estimation methods can be used to
obtain item difficulty and person’s ability parameter estimates (Fischer & Molenaar, 1995; Hoijtnik &
Boomsma, 1995; Molenaar, 1995). Difficulty and ability parameters can be estimated jointly by
maximizing the joint likelihood function (i.e., JIML; Wright & Stone, 1979). Conditional maximum
likelihood (CML; Andersen, 1980) seems to be the standard estimation method under the one-
parameter logistic model for estimation of difficulty parameters (e.g., Molenaar, 1995). Also, marginal
maximum likelihood (MML) estimation using the expectation and maximization algorithm can be
used to obtain difficulty parameter estimates (du Toit, 2003; Thissen, 1982). In addition, joint Bayesian
estimation and marginal Bayesian estimation can be employed to obtain parameter estimates under the
one-parameter logistic model (e.g., Birnbaum, 1969; Mislevy, 1986; Swaminathan & Gifford, 1982;
see also Tsutakawa, & Lin, 1986).

Point estimates of the Rasch model difficulty and ability parameters are obtained in these earlier
maximum likelihood estimation and Bayesian estimation methods by maximizing some forms of the
likelihood function or of the posterior distribution. Instead of obtaining point estimates, procedures to
approximate the posterior distribution under the Bayesian framework have been proposed relatively
recently. One such method, Gibbs sampling approaches the estimation of item and ability parameters
using the joint posterior distribution rather than the marginal distribution (e.g., Albert, 1992; Johnson
& Albert, 1999; Kim, 2001; Patz & Junker, 1999). It can be noted that there are several different
versions and implementations of Gibbs sampling that can be used to estimate item and ability
parameters. Even so, all Bayesian estimation methods should yield comparable item and ability
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parameter estimates, especially when comparable priors are used or when ignorance or locally-uniform
priors are used. This paper was designed to investigate this issue using the one-parameter logistic
Rasch model. Specifically, difficulty and ability parameter estimates from a Gibbs sampling method
that used the rejection sampling (GS1) is examined and compared with another Gibbs sampling
method that used data augmentation (GS2) as well as CML, MML, and JML. Because there exists
Swaminathan and Gifford’s (1982) seminal paper for Bayesian estimation under the Rasch model,
GS1 is explained below with their framework instead of employing new notations. The main issue that
differentiates GS1 in the current paper and the implementation used in Swaminathan and Gifford
(1982) lies in the notion of the posterior maximization and approximation.

It should be noted that in item response theory Gibbs sampling and the more general Markov chain
Monte Carlo methods are originally proposed to estimate parameters in rather complicated item
response models for that the usual estimation methods may not be readily available. Although Gibbs
sampling and the Markov chain Monte Carlo methods have been successfully applied to the modeling
of complex response data in some studies (e.g., Bolt, Cohen, & Wollack, 2001, 2002; Cohen & Bolt,
2005; Karabatsos & Batchelder, 2003; Sen, Cohen, & Kim, 2018) and some specialized computer
programs (e.g., Baker, 1998; Johnson & Albert, 1999; Wang, Bradlow, & Wainer, 2005) as well as a
general computer program (Spiegelhalter, Thomas, Best, & Gilks, 1997a) have been available, only
limited studies are available that investigated the characteristics of parameter estimates from Gibbs
sampling or the Markov chain Monte Carlo methods for the traditional item response theory models
including the Rasch model. Wollack, Bolt, Cohen, and Lee (2002), for example, investigated the
recovery characteristics of Gibbs sampling for the nominal response model, and Baker (1998)
investigated the recovery characteristics for the two-parameter logistic model. Kim (2001) reported
results from a comparison study for the one-parameter logistic model in which a Gibbs sampling
method was contrasted with other maximum likelihood estimation methods. Oztlirk and Karabatsos
(2017) discussed Gibbs sampling methods for estimating difficulty and ability parameters along with
item response outlier detection parameters under the Rasch model. Levy (2009) presented an excellent
review of the Markov chain Monte Carlo methods and Gibbs sampling for estimating item response
theory models and the discussion of prior specifications for the Bayesian estimation. Interested readers
should consult with Levy (2009) and references therein for the various computational methods under
the Bayesian framework. Recently, Sheng (2010, 2017) investigated the use or specification of priors
on the Markov chain Monte Carlo estimates under the three-parameter normal ogive model. Natesan,
Nandakumar, Minka, and Rubright (2016) investigated the effects of priors on the Markov chain
Monte Carlo and variational Bayes estimates for the one-, two-, and three-parameter logistic models.

Note that, despite the importance of the specification of priors in Bayesian estimation and the Gibbs
sampling method, there is not much transparency regarding the selection and use of priors in the
literature. This paper also illustrates the role of priors in the context of hierarchical Bayesian
framework of Swaminathan and Gifford (1982) under the Rasch model.

In the subsequent sections, various implementations of the estimation methods for the Rasch model
are briefly presented for the maximum likelihood methods and the Bayesian methods with a detailed
explication of prior specifications. Results from a comparison study for the various estimation methods
for the Rasch model are reported using empirical data from a published article. In order to assess the
effects of prior specifications on the parameter estimates in GS1, results from a comparison study for
employing various prior specifications are reported. Discussion for the general issues related Bayesian
estimation in item response theory is followed.

Implementations of Estimation Methods
Methods of Maximum Likelihood

This paper employed proprietary computer programs for the maximum likelihood estimation of the
difficulty and ability parameters. Specifically, WINMIRA (van Davier, 2001) was used for CML,
IRTPRO (Cai, Thissen, & du Toit, 2010) was used for MML, and Winsteps (Linacre, 2003) was used
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for JIML. Technical treatments of these estimation methods can be found in several original articles
contained as references in the computer program manuals. Baker and Kim (2004) also contains some
accounts of the implementations of the respective methods.

A main reference for CML is Andersen (1980) (see also Andersen, 1970, 1972; Baker & Harwell,
1994). Earlier FORTRAN code of CML can be found in Fischer (1968) and Fischer and Allerup
(1968). Thissen (1982) presented detailed accounts for theoretical background and the implementation
of MML of difficulty parameters under the Rasch model. The explication of the two versions of
Thissen’s (1982) MML can be found in Baker and Kim (2004, pp. 397-411) with BASIC and Java
code. Wright and his colleagues published many papers that presented implementations of JML (e.g.,
Wright & Panchapakesan, 1969). FORTRAN code for the earlier predecessors of Winsteps can be
found in Wright and Mead (1978) and Wright, Mead, and Bell (1980) (cf. Wright, Linacre, & Schultz,
1989). Although not treated in this manuscript, it should be noted that there are other recent
implementations of these earlier methods in R (Venables, Smith, & The R Development Core Team,
2009). Examples of R packages for item response theory modeling include Itm (Rizopoulos, 2006),
eRm (Mair & Hatzinger, 2007), and mirt (Chalmers, 2012).

Bayesian Methods

Swaminathan and Gifford (1982) presented Bayesian® estimation for the Rasch model. There are other
papers that presented Bayesian estimation methods for more general item response theory models (e.g.,
Leonard & Novick, 1985; Mislevy, 1986; Swaminathan & Gifford, 1985, 1986; Swaminathan,
Hambleton, Sireci, Xing, & Rizavi, 2003; Tsutakawa & Lin, 1986). As indicated earlier, nearly all
Bayesian methods in item response theory that were implemented on the computer programs were
used to obtain parameter estimates by maximizing some form of the posterior distribution.

Only recently, for example, Fox (2010), Stone and Zhu (2015), Levy and Mislevy (2016), and Luo
and Jiao (2017) presented Bayesian estimation of item and ability parameters based on the techniques
for the approximation of the posterior distribution, although Albert (1992) presented such a method
some time ago. Kim and Bolt (2007) presented excellent instructional material for the Markov chain
Monte Carlo methods to estimate parameters in item response theory models.

This paper is based on Swaminathan and Gifford’s framework and presents its implementation on
OpenBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2014). It deals with two different Bayesian
estimation cases; (1) ability parameter estimation with known difficulty parameters and (2) difficulty
and ability parameter estimation. The first case may provide a good foundational information for the
second case. These two cases are presented below without employing detailed equations because
nearly all of them can be found in Swaminathan and Gifford (1982).

Ability Estimation with Known Difficulty Parameters

In Bayesian ability estimation with known difficulty parameters, the posterior distribution can be
defined as

p(op)=22L28C) )

where p(x|0)=I(0) is the likelihood function of the ability parameter 6 with item response data x, p(6)
is the prior distribution, and p(x) = [ p(x|8)p(8)d6. Following Lindley and Smith (1972) and

Lt is not known to us that what will be the Reverend Thomas Bayes’s (1701-1761) answer to the question of “Are you a Bayesian? ” He
was the first by the eponymy to solve the inverse problem of passage from the sample to population using ideas that are very popular today
(Dodge, 2003, p. 29; Trader, 1997, cf. Stigler, 1980). Bayes’s (1763) original paper was reprinted (see Bayes, 1958) with a biographical note
by Barnard (1958). It should be noted that there is a list of eight errata for the original paper (Bayes, 1763) on the supposedly page 543 of
the Philosophical Transactions, Vol. 53. Barnard’s (1958) note didn’t indicate that there is the errata page, and the reprint on Biometrika,
Vol. 45 with modern notation did not include two of the errata.
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Novick, Lewis, and Jackson (1973), Swaminathan and Gifford (1982) used a hierarchical prior,
p(0) = ;p(6;|u, d)p(u, d), where i designates each person, p(u,)=p(¢) for which p(n) has an
improper uniform distribution and p(¢) has the inverse chi-square distribution with parameters v and
A (i.e., p~x~2(v, 1); Novick & Jackson, 1974, pp. 190-194). The nuisance parameters u and ¢ are
integrated out of the posterior distribution and then the resulting proportional posterior distribution is
maximized with the Newton-Raphson scheme to obtain point estimates of the ability parameters. With
a fixed p value, the kernel of the resulting ability distribution is that of the multivariate t distribution
(Anderson, 1984, pp. 272-273), and all ability parameters are estimated simultaneously in the Newton-
Raphson scheme. The specification of the hyperparameters v and A is a key issue in such hierarchical
Bayesian estimation.

In conjunction with the Markov chain Monte Carlo method for approximating the entire posterior
distribution and in the context of the computer program OpenBUGS (Spiegelhalter, Thomas, Best, &
Lunn, 2014) used in this study, it is better to use a proper yet noninformative uniform or normal
hyperprior distribution for p in addition to employing an independent hyperprior distribution for ¢.
The specification of the hyperparameters for the hyperprior distributions seems to be a very important
issue. A noninformative, diffuse hyperprior distribution can be used for u by specifying appropriate
hyperparameters, and an informative hyperprior distribution can be used for ¢ by specifying
appropriate hyperparameters.

One problem frequently encountered when specifying the distributional characteristics is that there are
too many different definitions of the specific distributions in Bayesian literature (cf. Segal’s law;
Block, 1977, p. 79). Because this paper is based on Swaminathan and Gifford’s notation but uses
OpenBUGS to obtain posterior distributional statistics in GS1, it is imperative to connect seemingly
the same yet different notations from different sources. An illustration below is for the inverse chi-
square distribution and the gamma distribution in essence.

Swaminathan and Gifford (1982, p. 178) used the scaled inverse chi-square distribution for ¢:
1
p(Iv,A)or ——exp [ —chp} 0<g<oo, A0, v>0 @)
92"t
(see Novick & Jackson, 1974, pp. 190-194; Isaacs, Christ, Novick, & Jackson, 1974, 175-196). Hence

(|)~X_2(V,7u) and ¢~ 1~x2(v,A™ 1) = y2(v,w), where W=<1>_1 variable has a scaled chi-square
density,
w21
p(le,co)ocwexp[g}, W>0, v>0, ©>0 3)

(see Novick & Jackson, 1974, pp. 186-190). It is not good that functions are shown with
proportionality because the exact density of the distribution is not explicit.

In terms of the exact density of the scaled inverse chi-square without employing proportionality (see

e.g., Gelman, Carlin, Stern, & Rubin, 1995, pp. 474-475 with their 6=¢ and vszsx of Novick &
Jackson, 1974, p. 191),

1 A
A)= on | 4
pEvA= T lv+1exp[_2¢] )

¢ 2
where I'(z) = fo t?~te~tdt is a gamma function (Davis, 1964, p. 255). Note that this distribution is

Berger’s (1985, p. 561) inverse gamma density, 1G(a,B), where a=v/2 and p=2/\ (n.b., this B is not
the difficulty parameter).

[oe]
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In prior specification, a different but better form of the distribution can be used. If vx|/¢~x2(v)

(Lindley, 1965, p. 26; Leonard & Hsu, 1999, p. 214; subscript | designates A from Lindley and Leonard
& Hsu), then

w22 Viy
p((l)lv’}ﬂ): F(V/Z) 1 exp _2_(1) )
o 2v+1

()

where v is the prior sample size and kl_l is the prior mean of cl)_l with the prior mean of ¢ to be
vxll(v—Z) for v>2. In terms of Berger’s 1G(a,f3), the corresponding parameters should be a=v/2 and
[3:2/(\/7»'). In terms of Swaminathan and Gifford’s (1982, p. 178) y2(v, 1), v=v and A=Vl of Lindley
(1965, p. 26), yielding the prior sample size is v, the prior mean of ¢_1 is v/A, and the prior mean of ¢
is A/(v-2) for v>2.

These distributions may not be directly used in available computer software. In OpenBUGS,
WinBUGS, as well as BUGS (e.g., Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2013, pp. 345-
346), p~dgamma(a,b) denotes the density is

p(0la,0)=b%2 1P (@) for ¢>0, 2,60 (6)
with mean a/b and variance a/b%. In Berger’s (1985, p. 560) gamma density, G(a.,), the parameters
are a=a and B=1/b with mean o3 and variance aBZ. Note that ¢~1G(v/2,2/L) means

¢ 1~G(v/2,2/2) = dgamma(v/2,2/1) in OpenBUGS with v=2a to be the prior sample size,
v/h=a/b to be the prior mean of ¢_1, and A/(v—2)=b/(a-1) to be the prior mean of ¢ for v=2a>2.

Estimation of Both Difficulty and Ability Parameters

The posterior distribution in this case can be defined as
_ n(x]6, B)p6.8)

where p(x|0,8)=1(6,B) is the likelihood function of the ability parameter 6 and the difficulty parameter
B with item response data x, p(6,B) is the prior distribution, and p(x) = [ p(x|6, B)p(8,5)d(6,B).
Again, following Lindley and Smith (1972) and Novick, Lewis, and Jackson (1973), Swaminathan
and Gifford (1982) wused independent hierarchical priors, p(0,8) =p(@)p(B) =

1;p(0:11e, Po)p (1o, bo) X Tp(B;|1p. $p)P(up, dg), Where i designates each person and j
designates each item, p(pe,d)e):p(q)e) and p(uB,q)B):p(q)B) for which p(pe) and p(pB) have improper
uniform distributions and p(¢,) and p(¢B) have the inverse chi-square distributions with parameters

Vo 7‘9’ i XB, respectively (i.e., ¢6~X_2(V6’7“6) and ¢B~X_2(VB,XB)). Again, the nuisance parameters
Ho» (1)9, Hg: <|>B are integrated out of the posterior distribution and then the resulting proportional

posterior distribution is maximized with the Newton-Raphson scheme to obtain point estimates of the
ability and item parameters. An iterative Birnbaum paradigm is used to obtain a set of ability estimates
and then a set of difficulty parameter estimates until the overall convergence criterion can be met
(Swaminathan & Gifford, 1982, p. 184).

The specification of the hyperparameters (i.e., Vg xe, v XB) is a key issue in hierarchical Bayesian
estimation. In conjunction with the Markov chain Monte Carlo method for approximating the entire
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posterior distribution and in the context of the computer program OpenBUGS (Spiegelhalter, Thomas,
Best, & Lunn, 2014) used in this study, it is better to use a proper yet noninformative uniform or
normal hyperprior distribution for Hg OF Mg in addition to employ an independent hyperprior for g Or

¢B. A noninformative, diffuse hyperprior distribution can be used for each p by specifying appropriate

hyperparameters, and an informative hyperprior distribution can be used for each ¢ by specifying
appropriate hyperparameters.

METHOD

Without loss of generality, we present below a comparison study for estimation of both difficulty and
ability parameters under Rasch model. Ability estimation can also be done by modifying the programs
in a trivial manner and hence not presented.

To compare GS1, GS2, CML, MML, and JML, illustrations using (1) the Law School Admission Test-
Section 6 (LSAT6; Bock & Aitkin, 1981; Bock & Lieberman, 1970) data and (2) the Law School
Admission Test-Section 7 (LSAT7) are presented below. It should be noted that the LSAT6 and
LSAT7 data have been analyzed in many published articles and books (e.g., Andersen, 1980;
McDonald, 1999). Use of these data instead of employing simulation data, hence, may provide a
familiar baseline to make comparisons of different estimation methods.

GS1 estimates were obtained using OpenBUGS. GS2 estimates were obtained using MATLAB (The
MathWorks, 1996) employing the code from Johnson and Albert (1999). Instead of OpenBUGS,
WinBUGS or BUGS (e.g., Spiegelhalter et al., 1997a) can also be used. Difficulty parameter estimates
are reported first and ability parameter estimates are subsequently reported for LSAT6 and LSAT7,
respectively. It is not necessary to show the listings of the input lines of CML, MML, and JML. Also
for GS2, the MATLAB function presented in Johnson and Albert (1999, p. 248) was used without any
modification. However, it is necessary to present the input lines for OpenBUGS. The portions of the
input lines are contained in Appendix. Note that in Appendix the inverse of the hyperparameter
variance was specified with dgamma (a=2.5, b=5) for both ability and difficulty prior distributions.
This prior specification is equivalent to Swaminathan and Gifford’s (1982) v=5 and A=10. Also note
that the centered value of the log odds of the classical item facilities denoted as pj (i.e., values of

Iog[(l—pj)/pj] centered at 0) were used for the initial values for difficulty parameters. Similar initial
values were specified for the ability parameters.

Based on the suggestions from Kim and Bolt (2007) and Kim (2001), burn-in was set to 1000 and the
next 10,000 iterations were used for GS1 to construct the posterior distributions that showed
convergence of the simulated draws (see Gilks, Richardson, & Spiegelhalter, 1996). The convergence
of the chains was visually monitored by checking history and autocorrelation plots. It should be noted
that there are many different ways to summarize the sampled values in GS1 or GS2. Instead of using
the actual posterior credibility interval, the posterior means and the posterior standard deviations are
used in this study. The marginal posterior densities of the samples values for respective parameters all
followed unimodal and likely normal distributions in GS1. GS2 also yielded similar results for the
sampled values.

RESULTS
Comparison of Estimation Methods
LSAT6 Estimation Results

For the LSAT®6 data that contained responses of 1000 subjects to five items, all five methods yielded
practically the same results for the difficulty estimates. Table 1 presents difficulty parameter estimates
based on the usual Rasch model scaling (i.e., the mean of difficulties is zero) that is the default setting
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for nearly all Rasch model calibration computer programs. Note that some differences still exist among
the difficulty parameter estimates and the accompanied standard errors or posterior standard
deviations. Although results from this simple data set may not be sufficient for fully evaluating
different estimation methods, these may provide good enough information about the agreement in
estimation results.

Table 1. LSAT6 Difficulty Estimates

GS1 Gs2? CML MML2 JML
Item bj (p.s.d) bj (p.s.d.) bj (s.e.) bj (s.e.) bj (s.e.)
1 -1.26 (0.11) -1.38 (0.10) -1.26 (0.13) -1.26 (0.13) -1.24 (0.11)
2 0.48 (0.07) 0.52 (0.07) 0.47 (0.08) 0.48 (0.08) 0.45 (0.07)
3 1.25 (0.07) 1.43 (0.07) 1.24 (0.08) 1.24 (0.07) 1.30 (0.07)
4 0.17 (0.07) 0.16 (0.08) 0.17 (0.09) 0.17 (0.09) 0.13 (0.07)
5 -0.63 (0.09) -0.72 (0.09) -0.62 (0.11) -0.63 (0.11) -0.64 (0.08)

Note. p.s.d. = posterior standard deviation; s.e. = standard error

8Estimates were transformed onto the zero centered logistic metric.

LSATG6 ability estimates and either the accompanied standard errors or the posterior standard
deviations are reported in Table 2 for each number-correct raw score from 0 to 5. In GS1 and GS2
there were different posterior means for examinees with the same response pattern or the same raw
score. In reporting of the ability estimates, the first examinees who got the respective raw scores were
used to obtain the estimates (i.e., examinees 1, 4, 12, 28, 62, and 703). Although the estimates who got
the same raw score were trivially different in the consideration of the magnitude of the posterior
standard deviation, obtaining such odd results were not seen in other maximum likelihood based
estimation procedures.

The most pronounced pattern in Table 2 is that estimates from GS1 and MML/EAP (i.e., expected a
posteriori) were very similar. Other estimation methods look somewhat different due to the extremely
small test size. Except for the scores 0 and 5, however, ability estimates from CML/ML and JML were
very similar. Because in the Rasch model with conditional maximum likelihood estimation the
weighted likelihood estimation (WLE; Warm, 1989) is popular, the results for such a case were
reported in the CML/WLE column.

Table 2. LSAT6 Ability Estimates

Score 6; (p.sd) 0; (ps.d.) 0; (s-e) 6; (se) 0; (p.s.d.) 6; (se)
0 -0.09 (0.64) -1.61 (0.98) -2.79 (1.72) 0.03 (1.05) -3.22(1.93)
1 0.31 (0.64) -0.74 (0.91) -1.60 (1.18) -1.34 (1.11) 0.40 (1.05) -1.72 (1.21)
2 0.71 (0.64) 0.02 (0.87) -0.47 (0.99) -0.41 (0.99) 0.76 (1.07) -0.52 (1.03)
3 1.12 (0.66) 0.79 (0.85) 0.48 (0.99) 0.42 (0.98) 1.14 (1.11) 0.51(1.21)
4 1.56 (0.67) 1.48 (0.91) 1.60 (1.18) 1.34 (1.11) 1.54 (1.11) 1.72 (1.21)
5 2.02 (0.70) 3.32 (1.24) 2.78 (1.71) 1.95 (1.13) 3.28(1.93)

Note. p.s.d. = posterior standard deviation; s.e. = standard error. GS1 and GS2 estimates were from examinees 1, 4, 12,
28, 62, and 703.

Estimates were transformed onto the zero centered logistic metric of item difficulty.
bAd hoc estimates were inserted to scores 0 and 5, respectively.

LSAT7 Estimation Results
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For the LSAT7 data, all five methods yielded practically the same results for the difficulty estimates
as did for the LSAT6 data. Table 3 presents difficulty parameter estimates based on the usual Rasch
model scaling. Note that some differences still exist among the difficulty parameter estimates and the
accompanied standard errors or posterior standard deviations.

Table 3. LSAT?7 Difficulty Estimates

GS1 Gs2? CML MML2 JML
Item bj (p.s.d) bj (p.s.d.) bj (s.e.) bj (s.e.) bj (se.)
1 -0.54 (0.08) -0.59 (0.14) -0.54 (0.10) -0.54 (0.13) -0.55 (0.08)
2 0.54 (0.07) 0.59 (0.12) 0.54 (0.08) 0.54 (0.09) 0.53 (0.07)
3 -0.13 (0.07) -0.17 (0.14) -0.13 (0.09) -0.13 (0.11) -0.15 (0.07)
4 0.81 (0.07) 0.90 (0.11) 0.81 (0.08) 0.80 (0.09) 0.83 (0.07)
5 -0.67 (0.08) -0.73 (0.15) -0.67 (0.10) -0.66 (0.14) -0.67 (0.08)

Note. p.s.d. = posterior standard deviation; s.e. = standard error

8Estimates were transformed onto the zero centered logistic metric.

Table 4 shows the ability estimates and either the accompanied standard errors or the posterior standard
deviations for each number-correct raw score from 0 to 5 for LSAT7. As was the case for LSATS, in
GS1 and GS2 there were different posterior means for examinees with the same response pattern or
the same raw score. In reporting of the ability estimates, the first examinees who got the respective
raw scores were used to obtain the estimates (i.e., examinees 1, 13, 33, 65, 145, and 693).

Note that ability estimates from GS1 and MML/EAP were very similar in Table 4. Other estimation
methods yielded somewhat different ability estimates partly due to the extremely small test size.
Except for the scores 0 and 5, however, ability estimates from CML/ML and JML were very similar.

Table 4. LSAT7 Ability Estimates

GS1 Gsza CML/ML CML/WLE MML/EApa JMLb
Score 6; (p.s.d) 6; (p.sd) 6; (se) 0; (se) 0; (p.sd) 0; (se)
0 -0.63 (0.73) -1.72 (1.00) —2.57 (1.66) -0.59 (0.70) -2.96 (1.90)
1 -0.12 (0.71) -0.81 (0.91) -1.49 (1.14) -1.21 (1.07) -0.10 (0.69) -1.54 (1.16)
2 0.38 (0.72) 0.11 (0.90) -0.44 (0.95) -0.38 (0.94) 0.39 (0.70) -0.47 (0.97)
3 091 (0.73) 0.78 (0.91) 0.44 (0.95) 0.37 (0.95) 0.89 (0.72) 0.45 (0.97)
4 1.47 (0.77) 1.54 (0.94) 1.49 (1.15) 1.21 (1.07) 1.44 (0.75) 1.54 (1.16)
5 2.11 (0.83) 2.86 (1.16) 2.59 (1.67) 2.05 (0.80) 2.98(1.91)

Note. p.s.d. = posterior standard deviation; s.e. = standard error. GS1 and GS2 estimates were from examinees 1, 13, 33,
65, 145, and 693.

aEstimates were transformed onto the zero centered logistic metric of item difficulty.
bAd hoc estimates were inserted to scores 0 and 5, respectively.

Comparison of Prior Specifications

To assess the effects of prior specifications on the difficulty and ability parameter estimates, the same
LSAT6 and LSAT7 data were analyzed with OpenBUGS. Four prior specifications with four different
sets of hyperparameters were used for both ability and difficulty prior distributions; (1)
dgamma(a=2.5, b=5), (2) dgamma(a=4, b=5), (3) dgamma(a=7.5, b=5), and (4) dgamma(a=12.5,
b=5). Because the first specification was the same as in the earlier calibration condition, only three
additional OpenBUGS runs were performed for LSAT6 and LSAT?7, respectively. Except for the prior
specification, all other settings to obtain the estimates remained the same for the OpenBUGS runs.
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Note that these prior specifications of a=2.5, 4, 7.5, 12.5 with b=5 are fully equivalent to Swaminathan
and Gifford’s (1982) v=5, 8, 15, 25 with A=10 used in their study.

LSAT6 Prior Specification Results

For the LSATG6 data, all four prior specifications yielded practically the same results for the difficulty
estimates, but a bit different results for the ability estimates. Table 5 presents difficulty parameter
estimates based on the usual Rasch model scaling. Note that only trivial differences exist among the
difficulty parameter estimates and the posterior standard deviations, that occur in the second decimal
places. Because each difficulty parameter was estimated with the sample size of 1000, shrinkage
toward the mean of the difficulty estimates might exist with the increasing hyperparameter a values
but barely noticeable. In Figure 1(a) LSAT6 difficulty estimates are plotted with the four different
values of the hyperparameter a=2.5, 4, 7.5, 12.5 (because the hyperparameter b=5 for all cases only
the four hyperparameters of a were used). The numbers in the plot designate the item numbers.

Table 5. LSAT6 Difficulty Estimates from Prior Specifications
GS1 Hyperparameters

a=2.5, b=5 a=4, b=5 a=7.5, b=5 a=12.5, b=5
Item bj (p.s.d.) bj (p.s.d.) bj (p.s.d.) bj (p.s.d.)
1 -1.26 (0.11) -1.25 (0.10) -1.24 (0.10) -1.22 (0.10)
2 0.48 (0.07) 0.48 (0.07) 0.47 (0.07) 0.46 (0.07)
3 1.25 (0.07) 1.24  (0.07) 1.23  (0.07) 1.21  (0.07)
4 0.17 (0.07) 0.17  (0.07) 0.16 (0.07) 0.16 (0.07)
5 -0.63 (0.09) -0.63 (0.08) -0.62 (0.08) -0.61 (0.08)

Note. p.s.d. = posterior standard deviation

LSATG ability estimates from the four prior specifications and the posterior standard deviations are
reported in Table 6 for each number-correct raw score from 0 to 5. In GS1 there were different posterior
means for examinees with the same response pattern or the same raw score. In reporting of the ability
estimates, the first examinees who got the respective raw scores were used to obtain the estimates (i.e.,
examinees 1, 4, 12, 28, 62, and 703).

Considering the magnitude of the posterior standard deviations, it can be noted in Table 6 that
practically trivial differences exist among the ability estimates and the posterior standard deviations.
Nevertheless, because each ability parameter was estimated with the truly small number of items,
shrinkage toward the mean of ability estimates with the increasing hyperparameter a values was quite
noticeable. In Figure 1(b) LSATG6 ability estimates are plotted with the four different values of the
hyperparameter a=2.5, 4, 7.5, 12.5 (because the hyperparameter b=5 for all cases only the four
hyperparameters of a were used). The numbers in the plot designate the raw scores from 0 to 5.

Table 6. LSAT6 Ability Estimates from Four Prior Specifications
GS1 Hyperparameters

a=2.5, b=5 a=4,b=5 a=7.5, b=5 a=12.5, b=5
Score 0; (p.s.d.) 0; (p.s.d.) 0; (p.s.d.) 0; (p.s.d.)
0 —0.09 (0.64) -0.07 (0.64) 0.01 (0.62) 0.12 (0.60)
1 0.31 (0.64) 0.33 (0.63) 0.39 (0.62) 0.45 (0.59)
2 0.71 (0.64) 0.72 (0.64) 0.77 (0.62) 0.79 (0.59)
3 1.12 (0.66) 1.13 (0.64) 1.13 (0.62) 1.15 (0.60)
4 1.56 (0.67) 1.56 (0.65) 1.54 (0.64) 150 (0.61)
5 2.02 (0.70) 2.02 (0.68) 1.97 (0.66) 1.89 (0.63)

Note. p.s.d. = posterior standard deviation
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Figure 1. Plots of (a) LSAT®6 difficulty estimates, (b) LSATG6 ability estimates, (c) LSAT7 difficulty
estimates, and (d) LSAT?7 ability estimates for the hyperparameter values of a=2.5, 4, 7.5, 12.5 with
b=5.

LSAT7 Prior Specification Results

For the LSATY data, all four prior specifications yielded practically the same results for the difficulty
estimates, but a bit different results for the ability estimates. Table 7 presents difficulty parameter
estimates based on the usual Rasch model scaling. Note that only trivial differences exist among the
difficulty parameter estimates and the posterior standard deviations, that occur in the second decimal
places. Because each difficulty parameter was estimated with the sample size of 1000, shrinkage
toward the mean of difficulty estimates might exist but not really noticeable. In Figure 1(c) LSAT7
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difficulty estimates are plotted with the four different values of the hyperparameter a=2.5, 4, 7.5, 12.5.
The numbers in the plot designate the item numbers.

Table 7. LSAT7 Item Difficulty Estimates from Four Prior Specifications
GS1 Hyperparameters

a=2.5, b=5 a=4, b=5 a=7.5, b=5 a=12.5, b=5
Item bj (p.s.d) bj (p.s.d.) bj (p.s.d.) bj (p.s.d)
1 -0.54 (0.08) -0.54 (0.08) -0.53 (0.08) -0.53 (0.08)
2 0.54 (0.07) 0.53 (0.07) 0.53 (0.07) 0.52 (0.07)
3 -0.13 (0.07) -0.13  (0.07) -0.13  (0.07) -0.13  (0.07)
4 0.81 (0.07) 0.80 (0.07) 0.79  (0.07) 0.78 (0.07)
5 -0.67 (0.08) -0.66 (0.08) -0.65 (0.08) -0.65 (0.08)

Note. p.s.d. = posterior standard deviation

LSAT?7 ability estimates from the four prior specifications and the posterior standard deviations are
reported in Table 8 for each number-correct raw score from 0 to 5. In GS1 there were different posterior
means for examinees with the same response pattern or the same raw score. In reporting of the ability
estimates, the first examinees who got the respective raw scores were used to obtain the estimates (i.e.,
examinees 1, 13, 33, 65, 145, and 693).

It can be noted that practically trivial differences exist among the ability estimates and the posterior
standard deviations, considering the magnitude of the posterior standard deviations. Nevertheless, each
ability parameter was estimated with the truly small number of items, shrinkage toward the mean of
ability estimates with the increasing hyperparameter a values was quite noticeable. In Figure 1(d)
LSATY7 ability estimates are plotted with the four different values of the hyperparameter a=2.5, 4, 7.5,
12.5. The numbers in the plot designate the raw scores from 0 to 5.

Table 8. LSAT7 Ability Estimates from Four Prior Specifications
GS1 Hyperparameters

a=2.5, b=5 a=4, b=5 a=7.5, b=5 a=12.5, b=5
Score 0; (p.s.d.) 0; (p.s.d.) 0; (p.s.d.) 0; (p.s.d.)
0 -0.63 (0.73) -0.60 (0.73) -0.56 (0.71) -0.49 (0.69)
1 -0.12 (0.71) -0.11 (0.72) -0.08 (0.69) -0.05 (0.69)
2 0.38 (0.72) 0.38 (0.72) 0.42 (0.69) 0.44 (0.70)
3 091 (0.73) 0.90 (0.73) 0.92 (0.72) 091 (0.71)
4 1.47 (0.77) 1.47 (0.77) 145 (0.75) 1.44 (0.73)
5 211 (0.83) 2.08 (0.83) 2.04 (0.80) 2.01 (0.78)

Note. p.s.d. = posterior standard deviation

DISCUSSION and CONCLUSION

The main difference between the two Gibbs sampling methods, GS1 and GS2, lies in both the
specifications of prior distributions and the underlying sampling procedures. The prior distributions
used in GS1 had the hierarchical form following Swaminathan and Gifford (1982). For example, the
hyperparameter mean of the normal prior distribution for ability had a noninformative uniform
distribution and the inverse of the hyperparameter variance of the normal prior had a gamma
distribution. In GS1 with gamma(a=2.5, b=5) the prior sample size of the gamma distribution was
specified as 2(2.5)=5 and the prior expected value was 2.5/5=0.5 (i.e., the expected value of the
hyperparameter variance to be 5/1.5=3.33). Note that this prior specification is equivalent to
Swaminathan and Gifford’s (1982) v=5 and A=10, one of the prior specifications in their paper. They
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used three other prior specifications that were converted to the equivalent specifications in the second
study. The use of gamma(2.5, 5) seems reasonable among the choices. Swaminathan and Gifford
(1982) concluded similarly. Note that there are also other ways of specifying priors for the Rasch
model (see Kim, 2001; Levy & Mislevy, 2016; Spiegelhalter et al., 1997b; Stone & Zhu, 2015) instead
of using priors in the hierarchical form. In Johnson and Albert’s (1999) item_rl function for GS2 the
hyperparamaters of the theta prior was set to have a standard normal distribution while prior standard
deviation of the item difficulty parameters was set to unity. See Johnson and Albert (1999, pp. 202—
204) for the detailed Gibbs sampling for GS2. Hence GS1 and GS2 differ not only the mathematical
forms of the model but also the priors employed.

Because the full conditional distributions for the Rasch model are log-concave (Ghosh, Ghosh, Chen,
& Agresti, 1999), the sampling in GS1 used the derivative-free adaptive rejection sampling algorithm
(Gilks, 1996; Gilks & Wild, 1992). Due to the use of hierarchical prior distributions, more general
sampling procedures can be employed for various parameters in GS1 (see Lunn et al., 2013, pp. 68—
70) that include slice sampling (Neal, 2003) and Metropolis-within-Gibbs (Metropolis et al., 1953;
Hasting, 1970). In GS2, direct Gibbs sampling method was used with data augmentation because the
actual item response theory model was that of the normal ogive instead of the logistic ogive (Albert,
1992; Baker, 1998). The resulting parameter estimates in GS2 were initially expressed on the normal
ogive metric but placed onto the logistic metric.

When difficulty and ability are estimated together in GS1 or GS2, the ability estimate for specific case
is not unique. The same response pattern may yield different ability estimates and that is not acceptable
in practice. In addition, because of employing the exchangeability concept, all ability estimates are
estimated simultaneously and there exists some dependency in the resulting estimates. Although
estimates are not independent in general, it seems troublesome that estimating ability even with known
item parameters may Yield different estimates for a specific response pattern. Hence, Gibbs sampling
methods or some other estimation methods based on Markov chain Monte Carlo may not be seen as
viable methods for the usual item and ability parameter estimation for the usual item response theory
models for dichotomous items that include the Rasch model.

In this study, the Rasch model was employed without addressing the problem of model selection,
choice of link function, or model fit. Kim and Bolt (2007) contains an excellent introductory review
of these issues. Interested readers should refer to Kim and Bolt (2007) and other general references
including Lunn et al. (2013).

Note that although Gibbs sampling methods and some computer programs which implemented such
procedures have been available sometime, the accuracy of the methods has not been thoroughly
studied. Obviously these techniques have been applied to some complicated modeling situations where
the traditional maximum likelihood based methods are too difficult to implement, and hence have not
been thoroughly tested and compared. Because maximum likelihood based methods have not been
implemented at all in such applications, still we need to investigate the relevant estimation procedures.
In addition, because there are many different ways of implementing Gibbs sampling methods in item
response theory and many different prior distributions can be employed with many different
specifications in Bayesian estimation, the illustrative implementation of the Gibbs sampling method
and comparing results with other existing Bayesian and likelihood based methods should provide
measurement specialists and test developers as well as the users of the computer programs with
guidelines for using the Gibbs sampling method under the Rasch item response theory model.

In this study, explications of nearly all estimation methods for the Rasch model were presented
together with the two methods based on Gibbs sampling. The specification of priors for ability and
difficulty parameters in Bayesian estimation and the Gibbs sampling method was fully explained with
detailed mathematical statistical formulas, basically following the framework of Swaminathan and
Gifford (1982). Illustrations about the effects of prior specifications on the estimates were presented
with empirical data. It should be noted that additional, full scale simulation studies as well as more
cumulative experience with regard to prior specifications for Bayesian estimation are definitely
needed.
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Rasch Modelinde Gibbs Ornekleme Yonteminin Uygulanmasi

Girig

Tek parametreli lojistik Rasch modelinde (Rasch, 1980), madde giigliigii ve kisi yetenek parametre
kestirimlerini elde etmek icin birgok kestirim metodu kullanilabilir (Fischer ve Molenaar, 1995;
Molenaar, 1995; Hoijtnik ve Boomsma, 1995). Madde giicliik ve kisi yetenek parametreleri, ortak
olabilirlik fonksiyonunu maksimize ederek ortak olarak kestirilebilir (yani, JML; Wright ve Stone,
1979). Kosullu maksimum olabilirlik (CML; Andersen, 1980), madde giigliik parametrelerinin tahmini
icin tek parametreli lojistik modelin altinda standart kestirim metodu olarak goriinmektedir (Or.
Molenaar, 1995). Ayrica, beklenti ve maksimizasyon algoritmasimi kullanarak marjinal maksimum
olabilirlik (MML) kestirimi, madde giiclilk parametre kestirimlerini elde etmek i¢in kullanilabilir (du
Toit, 2003; Thissen, 1982). Ek olarak, tek parametreli lojistik model altinda parametre kestirimlerini

elde etmek icin ortak Bayes kestirimi ve marjinal Bayes kestirimi kullanilabilir (6r. Birnbaum, 1969;
Mislevy, 1986; Swaminathan & Gifford, 1982; ayrica bkz. Tsutakawa, & Lin, 1986).

Rasch modeli madde giicliik ve kisi yetenek parametrelerinin nokta tahminleri, bu olasilik
fonksiyonlarin1 veya sonsal (posterior) dagilimin bazi formlarim1 maksimize ederek, maksimum
olasilik kestirimi ve Bayes kestirimi yontemlerinden elde edilir. Nokta tahminleri elde etmek yerine,
Bayesci ¢ergevesindeki sonsal dagilimi tahmin etmeye yonelik prosediirler nispeten yakin zamanda
Onerilmistir. Boyle bir yontem olan Gibbs 6rneklemesi, marjinal dagilimdan ziyade ortak sonsal
dagilimi kullanarak madde ve yetenek parametrelerini kestiren bir yaklasimdir (6r. Albert, 1992;
Johnson & Albert, 1999; Kim, 2001; Patz & Junker, 1999). Madde ve yetenek parametrelerini
kestirmek i¢in kullanilabilecek Gibbs 6rneklemesinin birkag farkli versiyonu ve uygulamasinin oldugu
unutulmamalidir. Yine de, tim Bayesci kestirim metotlari, 6zellikle karsilastirilabilir onseller
kullanildiginda veya yerel olarak tekdiize onseller kullanildiginda karsilastirilabilir madde ve yetenek
parametre kestirimleri vermelidir. Bu ¢alisma, tek parametreli lojistik Rasch modelini kullanarak bu
sorunu arastirmak icin tasarlanmustir. Ozellikle, reddetme Srneklemesi (GS1) kullanilan bir Gibbs
ornekleme yonteminin madde giicliik ve kisi yetenek parametre kestirimleri incelenmis ve veri artirma
(GS2) yonteminin yani sira CML, MML ve JML kullanilan baska bir Gibbs 6rnekleme yontemi ile
kargilagtirilmigtir. Bu c¢alismada GS1 igin yeni notasyonlar kullanmak yerine Swaminathan ve
Gifford’un (1982) Rasch modelinde Bayes kestirimi ile ilgili onermis oldugu notasyon takip edilmistir.
GS1'1 meveut ¢alismada farklilagtiran temel konu ve Swaminathan ve Gifford (1982)'da kullanilan
uygulama, sonsal maksimizasyon ve yakinsama kavraminda yatmaktadir. Bayes kestiriminde ve Gibbs
ornekleme yonteminde Onsellerin belirlenmesinin 6nemine ragmen, literatiirde Onsel se¢imi ve
kullanimi1 konusunda fazla bir seffaflik olmadigi gozlenmistir. Bu ¢alisma ayni1 zamanda, Rasch
modelinde Swaminathan ve Gifford'un (1982) hiyerarsik Bayes ¢ercevesi baglaminda dnsel se¢iminin
rollinu de géstermektedir.

Ydntem

Bu caligmada Rasch modeli altinda hem madde giicliik hem de kisi yetenek parametrelerinin kestirimi
icin bir karsilagtirma yapilmistir. GS1, GS2, CML, MML ve JML'yi karsilagtirmak icin, (1) Hukuk
Fakultesi Kabul Testi 6. Bolum (LSAT6; Bock & Aitkin, 1981; Bock & Lieberman, 1970) ve (2)
Hukuk Fakiiltesi Kabul Testi 7. Bolim (LSAT7) verileri kullanilmistir. LSAT6 (1000 kisi ve 5 madde)
ve LSAT7 verileri yayinlanmis bircok makale ve kitapta daha 6nce analiz edilmistir (6r., Andersen,
1980; McDonald, 1999). Simulasyon verileri yerine bu verilerin kullanmilmasi, farkli kestirim
yontemlerinin karsilastirilmasini yapmak i¢in okuyuculara bir temel saglamaktadir.

Bu ¢alismada GS1 kestirimleri OpenBUGS programu kullanilarak elde edilmistir. GS2 tahminleri,
Johnson ve Albert (1999)'dan gelen kodu iceren MATLAB (MathWorks, 1996) kullanilarak elde
edilmistir. LSAT6 ve LSAT7 i¢in 6nce madde giicliik parametre kestirimleri daha sonra da kisi
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yetenek parametre tahminleri rapor edilmistir. CML, MML ve JML sozdizimlerini gostermek gerekli
degildir. Ayrica GS2 i¢in Johnson ve Albert (1999, s. 248)’de sunulan MATLAB fonksiyonu herhangi
bir modifikasyon olmaksizin kullanilmistir. Bununla birlikte, OpenBUGS s6zdizimini sunmak gerekli
goriilmiistlir. S6zdiziminin gerekli boliimleri Ekte yer almaktadir. Ekte, hiperparametre varyansiin
tersi hem yetenek hem de madde giicliik parametreleri icin dgamma (a = 2.5, b = 5) ile belirtilmistir.
Bu 6nsel belirleme Swaminathan ve Gifford’un (1982) v =5 ve A = 10 degerlerine esdegerdir. Ayrica,
guclik parametrelerinin baslangi¢ degerleri igin, p; olarak gosterilen klasik madde giigliigiiniin log
oranlarinin ortalanmig degerinin (yani, 0'da ortalanmis olan log [(1-p;) / pj] degerleri) kullanildig1
dikkate alinmalidir. Yetenek parametreleri i¢in benzer baslangi¢ degerleri belirtilmistir.

Kim ve Bolt (2007) ve Kim (2001)'in énerilerine dayanarak burn-in kismindaki tekrar sayisi 1000'e
ayarlanmis ve sonraki 10,000 tekrari simiile edilmis c¢ekiliglerin yakinlagsmasini gosteren sonsal
dagilimlar1 olusturmak icin GS1 ve GS2’de kullanilmistir (bkz. Gilks, Richardson & Spiegelhalter,
1996). Zincirlerin yakinsakligi, gecmis ve otokorelasyon ¢izimleri kontrol edilerek gorsel olarak
izlenmistir. GS1 veya GS2'deki 6rneklenmis degerleri 6zetlemenin bir¢ok farkli yolu olduguna dikkat
edilmelidir. Gergek sonsal giivenilirlik araligin1 kullanmak yerine, bu ¢alismada sonsal ortalamalar ve
sonsal standart sapmalar kullanilmistir. Ilgili parametreler icin orneklerin marjinal sonsal
yogunluklari, GS1°de tek modlu ve normal dagilim gdstermistir. GS2’de 6rneklenen degerler de
benzer sonuglar vermistir.

Sonug ve Tartisma

Bu c¢aligmada farkli kestirim metotlar1 ve farkli o6nsel dagilimlar ayni veriler {izerinden
karsilastirilmustir. LSAT6 verisi ile elde edilen madde giigliik parametresi tahminleri ve eslik eden
standart hatalar veya sonsal standart sapmalar arasinda bazi farkliliklar gbzlenmistir. Bu bulgular
arasinda en belirgin olan1t GS1 ve MML/EAP kestirimlerinin ¢ok benzer ¢ikmasidir. Diger kestirim
yontemleri kiiciik test blylkligli nedeniyle biraz farklilik gdostermistir. LSAT7 verileri i¢in, tiim
metotlar, LSAT6 verileri i¢in oldugu gibi, madde giigliik kestirimleri i¢in pratik olarak ayni sonuglar
vermistir. Onsel belirlemelerin (prior specifications) madde giicliik ve yetenek parametre kestirimleri
Uzerindeki etkilerini degerlendirmek i¢in, ayni LSAT6 ve LSAT7 verileri OpenBUGS ile analiz
edilmistir. LSAT6 ve LSAT7 verileri i¢in, onsel belirlemelerin hepsi, madde giigliik tahminleri igin
pratik olarak ayni sonuglar1 vermistir, fakat yetenek tahminleri igin biraz farkli sonuglar elde edilmistir.

Iki Gibbs 6rnekleme yontemi, GS1 ve GS2, arasindaki ana fark, hem onsel dagilimlarin 6zelliklerinde
hem de temel Ornekleme prosediirlerinde yatmaktadir. GS1'de kullanilan &nsel dagilimlar,
Swaminathan ve Gifford (1982)’un 6nerisini takip eden hiyerarsik forma sahiptir. Ornegin, yetenek
parametresinin normal olan 6nsel dagilimina ait hiperparametrenin ortalamasi, bilgi-verici olmayan
(non-informative) bir tekdiize dagilima sahip iken 6nsel normal olanin hiperparametre varyansinin
tersi, bir gama dagilimina sahiptir. Gama (a = 2.5, b = 5) dagilhimli GS1'de, gama dagiliminin &nsel
orneklem buylikligl 2*(2.5) = 5 olarak belirlendi ve onsel beklenen deger 2.5 / 5 = 0.5 idi (yani,
hipermetre varyansinin beklenen degeri 5 / 1.5 = 3.33). Bu 6nsel belirlemenin, Swaminathan ve
Gifford’un (1982) v = 5 ve A = 10 degerlerine esdeger oldugunu unutmayin. Swaminathan ve Gifford
ikinci bir ¢aligmada, esdeger belirlemelere doniistiiriilmiis olan baska {i¢ 6zellik daha kullanmistir. Bu
calisgmada Gamma (2.5, 5) kullanimi makul bir secenek olarak goriinmektedir. Swaminathan ve
Gifford (1982) da benzer sonuglar1 raporlamistir. Hiyerarsik formda onselleri kullanmanin yaninda
Rasch modeli igin onselleri belirlemenin baska yollar1 da vardir (bkz. Kim, 2001; Levy & Mislevy,
2016; Spiegelhalter ve ark., 1996b; Stone & Zhu, 2015). Johnson ve Albert'n (1999) item rl
fonksiyonunda GS2 i¢in, onsel teta hiperparamatreleri standart bir normal dagilima ayarlanmis, ote
yandan standart sapma parametrelerinin birligi olarak ayarlanmistir. GS2’ye ait ayrintili Gibbs
orneklemesi icin Johnson ve Albert (1999, s. 202-204)'e bakilabilir. Dolayisiyla GS1 ve GS2 sadece
modelin matematiksel formlarinda degil, aym1 zamanda kullanilan Onsellerde de farklilik
gostermektedir.
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Appendix: OpenBUGS Code

model {
# patterned data to individual responses
for (i in l:cof[1l]) {
for (j in 1:J) { x[i, Jj] <- pattern([l, j] }
}
for (g in 2:G) {
for (i in cof[g-1]+l:coflg]l) {
for (j in 1:J) { x[i, j] <- patternlg, jl }

}
# Rasch model
for (i in 1:I) |
for (j in 1:J) {
logit(pl[i, J]) <- thetal[i] - betalj]
x[i, j] ~ dbern(p[i, J])
}
# ability prior
theta[i] ~ dnorm(mut, taut)
t[i] <- thetal[i] - mean (betal])
}
# item prior
for (j in 1:3J) {
beta[j] ~ dnorm(mub, taub)
b[j] <- betal[j] - mean (betal])
}
# hyperpriors
mut ~ dunif (-5, 5)
taut ~ dgamma (2.5, 5)
phit <- 1 / sqgrt(taut)
mub ~ dunif (-5, 5)
taub ~ dgamma (2.5, 5)

# lsat6 patterned data with cumulative observed frequencies
list(I = 1000, G = 32, J =5,
cof = ¢(3, 9, 11, 22, 23, 24, 27, 31, 32, 40,
40, 56, 56, 59, 61, 76, 86, 115, 129, 210,
213, 241, 256, 336, 352, 408, 429, 602, 613, 674,

702, 1000),
pattern = structure(.Data = c(
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, 0, 0, 0, 1,
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i, o, 0, 1, 1,
i, o0, 1, 0, O,
i, 0, 1, 0O, 1,
i, o0, 1, 1, O,
i, o, 1, 1, 1,
i, 1, 0, 0, O,
i, 1, 0, 0, 1,
i, 1, 0, 1, O,
i, 1, o, 1, 1,
i, 1, 1, 0, O,
i, 1, 1, 0, 1,
i, 1, 1, 1, O,
i, 1, 1, 1, 1), .Dim = c(32, 5))

# initial values

list(
beta = c(-1.163685322, 0.44376115, 1.121494003, 0.165095519, -0.566665352),
mut = taut = 1,

OI
mub = 0, taub = 1,
theta = ¢c(-2.1972246, -2.1972246, -2.1972246, -1.3862944, -1.3862944,

2.1972246) # 1000 initial theta values
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