Research Article
BibTex RIS Cite

Bir art yakıcı modülünün ön tasarımı ve analizi

Year 2023, Volume: 4 Issue: 2, 80 - 102, 31.12.2023
https://doi.org/10.55212/ijaa.1391886

Abstract

Bu çalışmada, jet motorlarında kullanılan art yakıcının tasarım hesapları ve hesaplamaları analitik ve hesaplamalı analiz sonuçları değerlendirilerek sunulmuştur. Art yakıcı giriş değerleri olarak 1050 K sıcaklık, 300 kPa basınç ve 3,6 kg/s kütlesel debi tasarım şartları olarak alınmıştır. Kavramsal tasarım kapsamında uzunluk kısıtı olarak tasarlanacak kesitler için maksimum uzunluk ve çap sırasıyla 500 mm ve 200 mm'dir. İki halkalı oluk 1,33 cm çapında ve 4,25 cm yüksekliğindedir. Jet A yakıtının püskürtme çubuklarından çekirdek akışına (90 derece) enjekte edildiği varsayılmaktadır. Sprey, akışın karışımını optimize etmek için damar oluğu ile aynı hizada monte edilmiştir. Analizler püskürtme çubuğu ile oluk arasındaki 4 cm için gerçekleştirilmiştir. Çalışma için GE J79 motoru literatürden incelenmiş ve aerodinamik geçiş kesiti tasarımı için temel alınmıştır. TEKNOFEST 2023 Jet Motoru Tasarım Yarışması kapsamında tasarım gereksinimleri ve kısıtları doğrultusunda 700 libre itki üretebilen ve 25 saat ömür kapasitesine sahip bir art yakıcı modülün ön tasarımının gerçekleştirilmesi gerekmektedir. Geometrik kısıtlar ışığında modülün tek boyutlu yanma hesapları yapılarak ilgili SolidWorks CAD programı kullanılarak parçalar modellenir ve modellenen bu parçalar daha sonra ANSYS™ ortamına aktarılarak sonuçlar ve analizler doğrulanır. Art yakıcı modülü akış analizi yazılım programı ANSYS™, sıkıştırılabilir, viskoz ve standart k-epsilon türbülans modeli kullanılarak her iki soğuk çalışma aralığında (yani yanma olmadan) art yakıcı çalışmasını analiz etmek için kullanılmıştır. Sonuç olarak, art yakıcı uzunluğunun yanma performansı üzerindeki etkisinin önemli olduğu bulunmuştur. Hesaplamalar sonucunda art yakıcı uzunluğu 28,14 cm olarak bulunmuştur. Yanma veriminin %81,5 olduğu ve sıcaklığın 1050 K'den 2044 K'ye çıkarılabileceği bulunmuştur. Geometrik parametreler ve ısı ilavesi nedeniyle basınç düşüşü olarak toplam basınç kaybı %14,96'dır. Damar-oluk geometrisinin kullanımına bağlı olarak hesaplanan blokaj oranı basınç düşüşündeki en önemli parametredir. Art yakıcı çalışmadığında 670 lbs (2981 N) itki üreten jet motorunun, art yakıcı aktif olduğunda özgül yakıt tüketiminde %50'lik bir artış pahasına önemli miktarda güç artışı sağlayabildiği ve %10,1'lik bir itki artışı ile 738 lbs (3238 N) itki sağladığı tespit edilmiştir. Bu artışın nedeni, esas olarak damar oluğunun akış yapısı üzerindeki karıştırma etkisinden kaynaklanmaktadır.

References

  • Krishnan, G., Paulo, C., & Maris, D. N. 2013. An assessment of relative technology benefits of a variable pitch fan and variable area nozzle. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (p. 3604).
  • Breton, J. J., Huff, D. L., Geisel hart, K., & Seidel, J. 2020. Supersonic technology concept aero planes for environmental studies. In AIAA SciTech 2020 Forum (p. 0263).
  • Hendricks, E. S., Flack, R. D., & Gray, J. S. 2017. Simultaneous propulsion system and trajectory optimization. In 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (p. 4435).
  • McGrew, J. S., How, J. P., Williams, B., & Roy, N. 2010. Air-combat strategy using approximate dynamic programming. Journal of guidance, control, and dynamics, 33(5), 1641-1654.
  • Ashley, S. 1995. Thrust vectoring: a new angle to air superiority. Mechanical Engineering, 117(1), 58.
  • Rumsfeld, D. H. 2002. Transforming the military. Foreign Off., 81, 20.
  • Tam, C. K. 2021. On the generation of entropy noise in a shock containing nozzle of high-performance aircraft at afterburner. Journal of Sound and Vibration, 512, 116389.
  • Williams, J., & Ezunkpe, Y. 2023. Design of an Efficient Turbofan Engine with Afterburners. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-248. DOI: doi. org/10.47363/JEAST/2023 (5), 177, 2-8.
  • Xing, F., Kumar, A., Huang, Y., Chan, S., Ruan, C., Gu, S., & Fan, X. (2017). Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application. Applied Energy, 193, 28-51.
  • Tamarin, Y. 2002. Protective coatings for turbine blades. ASM international.
  • Liu, S., Li, J., Zhu, G., Wang, W., & Liu, Y. (2018). Mixing and combustion enhancement of turbocharged solid propellant ramjet. Acta Astronautica, 143, 193-202.
  • Carter, P., & Balepin, V. 2002. Mass injection and precompressor cooling engines analyses. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 4127).
  • Xu, L., Sun, Z., Ruan, Q., Xi, L., Gao, J., & Li, Y. 2023. Development Trend of Cooling Technology for Turbine Blades at Super-High Temperature of above 2000 K. Energies, 16(2), 668.
  • Gurrappa, I., Yashwanth, I. V. S., Mounika, I., Murakami, H., & Kuroda, S. 2015. The importance of hot corrosion and its effective prevention for enhanced efficiency of gas turbines. Gas Turbines-Materials, Modeling and Performance, 1, 55-102.
  • Chen, F., Ruan, C., Yu, T., Cai, W., Mao, Y., & Lu, X. 2019. Effects of fuel variation and inlet air temperature on combustion stability in a gas turbine model combustor. Aerospace Science and Technology, 92, 126-138.
  • Burger, V. 2017. The influence of fuel properties on threshold combustion in aviation gas turbine engines.
  • Safdar, M. M., Masud, J., Mufti, B., Naseer, H. U., Farooq, A., & Ullah, A. 2020. Numerical Modeling and Analysis of Afterburner Combustion of a Low Bypass Ratio Turbofan Engine. In AIAA Scitech 2020 Forum (p. 0628).
  • Ebrahimi, H. 2006. Overview of gas turbine augmentor design, operation, and combustion oscillation. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 4916).
  • Anand, R., Lokesharun, D., Rajkumar, S., & Kirubakaran, R. 2017. 3D CFD analysis in an afterburner using NUMECA. IJAREM. ISSN, 2456-2033.
  • Davis Jr, M. W., & Kidman, D. S. 2010. Prediction and analysis of inlet pressure and temperature distortion on engine operability from a recent T-38 flight test program. In Turbo Expo: Power for Land, Sea, and Air (Vol. 43963, pp. 1-11).
  • Lovett, J., Brogan, T., Philippona, D., Kiel, B., & Thompson, T. 2004. Development needs for advanced afterburner designs. In 40th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit (p. 4192).
  • Lord, W., MacMartin, D., & Tillman, G. 2000. Flow control opportunities in gas turbine engines. In Fluids 2000 Conference and Exhibit (p. 2234).
  • Ebrahimi, H. 2006. Overview of gas turbine augmentor design, operation, and combustion oscillation. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 4916).
  • Lovett, J., Brogan, T., Philippona, D., Kiel, B., & Thompson, T. 2004. Development needs for advanced afterburner designs. In 40th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit (p. 4192).
  • Mattingly, J. D. 2002. Aircraft engine design. AIAA.
  • Cooper, J., & Dingle, L. 2005. Engineering an afterburner for a miniature gas turbine engine. Aircraft Engineering and Aerospace Technology, 77(2), 104-108.
  • ANSYS Inc. 2020. Anysys Fluent User’s Guide Release 2020 R1.

Preliminary design and analysis of an afterburner module

Year 2023, Volume: 4 Issue: 2, 80 - 102, 31.12.2023
https://doi.org/10.55212/ijaa.1391886

Abstract

In this study, design calculations and calculations of afterburner used in jet engines are presented by evaluating the results of analytical and computational analysis. Afterburner inlet values of 1050 K temperature, 300 kPa pressure and 3.6 kg/s mass flow rate are taken as the design conditions. Maximum length and diameter are 500 mm and 200 mm, respectively, for the sections to be designed as length constraints within the scope of the conceptual design. The two-ring vee-gutter has 1.33 cm in diameter and 4.25 cm high. Jet A fuel is assumed to be injected into the core flow (90 degrees) from the spray bars. The spray is mounted in line with the vee-gutter to optimize the mixing of the flow. Analyses are performed for 4 cm between the spray bar and the vee-gutter. For the study, the GE J79 engine was examined from the literature and taken as a basis for the aerodynamic transition section design. Within the scope of TEKNOFEST 2023 Jet Engine Design Competition, a preliminary design of an afterburner module that can produce 700 pounds of thrust and has a life capacity of 25 hours should be realized in line with the design requirements and constraints. In the light of geometric constraints, one-dimensional combustion calculations of the module are made, and the parts are modelled using the relevant SolidWorks CAD program and these modelled parts are then transferred to ANSYS™ environment and the results and analyses are verified. The afterburner module flow analysis software program ANSYS™ is used to analyse the afterburner operation in both cold operating ranges (i.e. without combustion) using compressible, viscous and standard k-epsilon turbulence model. As a result, the effect of afterburner length on combustion performance is found to be significant. As a result of the calculations, afterburner length is found as 28.14 cm. It is found that the combustion efficiency is 81.5% and the temperature can be increased from 1050 K to 2044 K. The total pressure loss is 14.96% as pressure drop due to the geometric parameters and heat addition. The blockage ratio calculated due to the use of vee-gutter geometry is the most important parameter in the pressure drop. It is found that the jet engine producing 670 lbs (2981 N) of thrust when the afterburner is not working whereas it can provide a significant amount of power increment at the expense of a 50% increase in specific fuel consumption when the afterburner is active as well as providing a 738 lbs (3238 N) with a 10.1% thrust increase. The reason of the enhancement is mainly coming from the mixing effect of the vee-gutter on the flow structure.

References

  • Krishnan, G., Paulo, C., & Maris, D. N. 2013. An assessment of relative technology benefits of a variable pitch fan and variable area nozzle. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (p. 3604).
  • Breton, J. J., Huff, D. L., Geisel hart, K., & Seidel, J. 2020. Supersonic technology concept aero planes for environmental studies. In AIAA SciTech 2020 Forum (p. 0263).
  • Hendricks, E. S., Flack, R. D., & Gray, J. S. 2017. Simultaneous propulsion system and trajectory optimization. In 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (p. 4435).
  • McGrew, J. S., How, J. P., Williams, B., & Roy, N. 2010. Air-combat strategy using approximate dynamic programming. Journal of guidance, control, and dynamics, 33(5), 1641-1654.
  • Ashley, S. 1995. Thrust vectoring: a new angle to air superiority. Mechanical Engineering, 117(1), 58.
  • Rumsfeld, D. H. 2002. Transforming the military. Foreign Off., 81, 20.
  • Tam, C. K. 2021. On the generation of entropy noise in a shock containing nozzle of high-performance aircraft at afterburner. Journal of Sound and Vibration, 512, 116389.
  • Williams, J., & Ezunkpe, Y. 2023. Design of an Efficient Turbofan Engine with Afterburners. Journal of Engineering and Applied Sciences Technology. SRC/JEAST-248. DOI: doi. org/10.47363/JEAST/2023 (5), 177, 2-8.
  • Xing, F., Kumar, A., Huang, Y., Chan, S., Ruan, C., Gu, S., & Fan, X. (2017). Flameless combustion with liquid fuel: A review focusing on fundamentals and gas turbine application. Applied Energy, 193, 28-51.
  • Tamarin, Y. 2002. Protective coatings for turbine blades. ASM international.
  • Liu, S., Li, J., Zhu, G., Wang, W., & Liu, Y. (2018). Mixing and combustion enhancement of turbocharged solid propellant ramjet. Acta Astronautica, 143, 193-202.
  • Carter, P., & Balepin, V. 2002. Mass injection and precompressor cooling engines analyses. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 4127).
  • Xu, L., Sun, Z., Ruan, Q., Xi, L., Gao, J., & Li, Y. 2023. Development Trend of Cooling Technology for Turbine Blades at Super-High Temperature of above 2000 K. Energies, 16(2), 668.
  • Gurrappa, I., Yashwanth, I. V. S., Mounika, I., Murakami, H., & Kuroda, S. 2015. The importance of hot corrosion and its effective prevention for enhanced efficiency of gas turbines. Gas Turbines-Materials, Modeling and Performance, 1, 55-102.
  • Chen, F., Ruan, C., Yu, T., Cai, W., Mao, Y., & Lu, X. 2019. Effects of fuel variation and inlet air temperature on combustion stability in a gas turbine model combustor. Aerospace Science and Technology, 92, 126-138.
  • Burger, V. 2017. The influence of fuel properties on threshold combustion in aviation gas turbine engines.
  • Safdar, M. M., Masud, J., Mufti, B., Naseer, H. U., Farooq, A., & Ullah, A. 2020. Numerical Modeling and Analysis of Afterburner Combustion of a Low Bypass Ratio Turbofan Engine. In AIAA Scitech 2020 Forum (p. 0628).
  • Ebrahimi, H. 2006. Overview of gas turbine augmentor design, operation, and combustion oscillation. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 4916).
  • Anand, R., Lokesharun, D., Rajkumar, S., & Kirubakaran, R. 2017. 3D CFD analysis in an afterburner using NUMECA. IJAREM. ISSN, 2456-2033.
  • Davis Jr, M. W., & Kidman, D. S. 2010. Prediction and analysis of inlet pressure and temperature distortion on engine operability from a recent T-38 flight test program. In Turbo Expo: Power for Land, Sea, and Air (Vol. 43963, pp. 1-11).
  • Lovett, J., Brogan, T., Philippona, D., Kiel, B., & Thompson, T. 2004. Development needs for advanced afterburner designs. In 40th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit (p. 4192).
  • Lord, W., MacMartin, D., & Tillman, G. 2000. Flow control opportunities in gas turbine engines. In Fluids 2000 Conference and Exhibit (p. 2234).
  • Ebrahimi, H. 2006. Overview of gas turbine augmentor design, operation, and combustion oscillation. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (p. 4916).
  • Lovett, J., Brogan, T., Philippona, D., Kiel, B., & Thompson, T. 2004. Development needs for advanced afterburner designs. In 40th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit (p. 4192).
  • Mattingly, J. D. 2002. Aircraft engine design. AIAA.
  • Cooper, J., & Dingle, L. 2005. Engineering an afterburner for a miniature gas turbine engine. Aircraft Engineering and Aerospace Technology, 77(2), 104-108.
  • ANSYS Inc. 2020. Anysys Fluent User’s Guide Release 2020 R1.
There are 27 citations in total.

Details

Primary Language English
Subjects Aircraft Performance and Flight Control Systems, Aerospace Engineering (Other)
Journal Section Research Articles
Authors

Muhammed Cuma Sönmez 0009-0004-8950-8624

Mustafa Karabacak 0000-0002-3301-9862

Muammer Ozgoren 0000-0002-9088-5679

Publication Date December 31, 2023
Submission Date November 16, 2023
Acceptance Date December 13, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Sönmez, M. C., Karabacak, M., & Ozgoren, M. (2023). Preliminary design and analysis of an afterburner module. International Journal of Aeronautics and Astronautics, 4(2), 80-102. https://doi.org/10.55212/ijaa.1391886
AMA Sönmez MC, Karabacak M, Ozgoren M. Preliminary design and analysis of an afterburner module. International Journal of Aeronautics and Astronautics. December 2023;4(2):80-102. doi:10.55212/ijaa.1391886
Chicago Sönmez, Muhammed Cuma, Mustafa Karabacak, and Muammer Ozgoren. “Preliminary Design and Analysis of an Afterburner Module”. International Journal of Aeronautics and Astronautics 4, no. 2 (December 2023): 80-102. https://doi.org/10.55212/ijaa.1391886.
EndNote Sönmez MC, Karabacak M, Ozgoren M (December 1, 2023) Preliminary design and analysis of an afterburner module. International Journal of Aeronautics and Astronautics 4 2 80–102.
IEEE M. C. Sönmez, M. Karabacak, and M. Ozgoren, “Preliminary design and analysis of an afterburner module”, International Journal of Aeronautics and Astronautics, vol. 4, no. 2, pp. 80–102, 2023, doi: 10.55212/ijaa.1391886.
ISNAD Sönmez, Muhammed Cuma et al. “Preliminary Design and Analysis of an Afterburner Module”. International Journal of Aeronautics and Astronautics 4/2 (December 2023), 80-102. https://doi.org/10.55212/ijaa.1391886.
JAMA Sönmez MC, Karabacak M, Ozgoren M. Preliminary design and analysis of an afterburner module. International Journal of Aeronautics and Astronautics. 2023;4:80–102.
MLA Sönmez, Muhammed Cuma et al. “Preliminary Design and Analysis of an Afterburner Module”. International Journal of Aeronautics and Astronautics, vol. 4, no. 2, 2023, pp. 80-102, doi:10.55212/ijaa.1391886.
Vancouver Sönmez MC, Karabacak M, Ozgoren M. Preliminary design and analysis of an afterburner module. International Journal of Aeronautics and Astronautics. 2023;4(2):80-102.

International Journal of Aeronautics and Astronautics is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY NC).