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SS-SUPPLEMENTED MODULES

ENGIN KAYNAR, HAMZA ÇALIŞICI, AND ERGÜL TÜRKMEN

Abstract. A module M is called ss-supplemented if every submodule U of
M has a supplement V in M such that U ∩ V is semisimple. It is shown
that a finitely generated module M is ss-supplemented iff it is supplemented
and Rad(M) ⊆ Soc(M). A module M is called strongly local if it is local
and Rad(M) is semisimple. Any direct sum of strongly local modules is ss-
supplemented and coatomic. A ring R is semiperfect and Rad(R) ⊆ Soc(RR)
iff every left R-module is (amply) ss-supplemented iff RR is a finite sum of
strongly local submodules.

1. Introduction

Throughout this study, all rings are associative with identity and all modules
are unitary left modules. Let R be a ring and M be an R-module. U ⊆ M will
mean that U is a submodule of M . Rad(M) and Soc(M) will indicate radical and
socle of M . A submodule N of M is called small in M , denoted N << M , if
M 6= N + K for every proper submodule K of M . Let U and V be submodules
of M . V is called a supplement of U in M if it is minimal with respect to M =
U + V , equivalently M = U + V and U ∩ V << V . The module M is called
supplemented if every submodule of M has a supplement in M . A submodule U of
M has ample supplements in M if every submodule L of M such that M = U + L
contains a supplement of U in M . The module M is called amply supplemented
if every submodule of M has ample supplements in M . For characterizations of
supplemented and amply supplemented modules we refer to [7]
A non-zero module M is called hollow if every proper submodule of M is small

in M and is called local if the sum of all proper submodules of M is also a proper
submodule ofM . Note that local modules are hollow and hollow modules are clearly
amply supplemented. A ring R is called local ring if RR is a local module.
In [8], Zhou and Zhang generalized the concept of socle of a moduleM to that of

Socs(M) by considering the class of all simple submodules ofM that are small inM
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in place of the class of all simple submodules of M , that is, Socs(M) =
∑
{N <<

M |N is simple}. It is clear that Socs(M) ⊆ Rad(M) and Socs(M) ⊆ Soc(M).
We call a module M strongly local if it is local and Rad(M) is semisimple. We

call a ring R left strongly local ring if RR is a strongly local module. Then we have
that the following implications on modules:

simple =⇒ strongly local =⇒ local

Next we mention two examples which show that the above implications are
proper. For the local left Z-module M = Z4, we have Rad(M) = Soc(M). Hence,
M is strongly local but not simple. On the other hand, for the local left Z-module
M = Z8, Soc(M) is a proper submodule of Rad(M). Thus M is not a strongly
local module.
In section 2 we study on strongly local modules and rings. We show that every

left strongly local ring is left perfect and right perfect. A strongly local commutative
domain is field.
Let U and V be submodules of a module M . V is called a Rad-supplement of

U in M if M = U + V and U ∩ V ⊆ Rad(V ). Since Socs(V ) ⊆ Rad(V ), it is
of interest to investigate the analogue of this notion by replacing “Rad(V )”with
“Socs(V )”. Now, we give the following result playing a key role in our work as
a proper generalization of direct summands. Firstly, we need the following well
known facts that we include here for completeness.

Lemma 1. Let M be a module and N be a semisimple submodule of M which is
contained in Rad(M). Then N << M .

Proof. Let N + K = M for some submodule K of M . Since N is semisimple,
there exists a submodule N

′
of N such that N = (N ∩ K) ⊕ N

′
. Hence M =

N + K = [(N ∩ K) ⊕ N
′
] + K = N

′
+ K. Since N

′ ∩ K = (N
′ ∩ N) ∩ K =

N
′ ∩ (N ∩ K) = 0, we have M = N

′ ⊕ K. It follows from [7, 21.6 (5)] that
Rad(M) = Rad(N

′
) ⊕ Rad(K) = Rad(K) since Rad(N

′
) ⊆ Rad(N) = 0. Then

M = N +K ⊆ Rad(M) +K ⊆ K. It means that N << M . �

Lemma 2. Let M be a module. Then Socs(M) = Rad(M) ∩ Soc(M).

Proof. Let a ∈ Rad(M)∩Soc(M). Then Ra is semisimple and so there exist n ∈ Z+
and simple submodules Si of M (1 ≤ i ≤ n) such that Ra = S1 ⊕ S2 ⊕ ...⊕ Sn by
[6, Proposition 3.3]. Since Ra is small in M , it follows from [7, 19.3 (2)] that each
Si is small in M . Thus a ∈ Ra ⊆ Socs(M). �

Lemma 3. Let M be a module and U , V be submodules of M . Then the following
statements are equivalent:

(1) M = U + V and U ∩ V ⊆ Socs(V ),
(2) M = U + V , U ∩ V ⊆ Rad(V ) and U ∩ V is semisimple,
(3) M = U + V , U ∩ V << V and U ∩ V is semisimple.
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Proof. (1) =⇒ (2) It follows that U ∩ V ⊆ Socs(V ) ⊆ Rad(V ) ∩ Soc(V ). Hence,
we deduce that U ∩ V ⊆ Rad(V ) and U ∩ V is semisimple.
(2) =⇒ (3) It is clear by Lemma 1.
(3) =⇒ (1) It is clear by Lemma 2 �

We say that V an ss-supplement of U in M if the equal conditions in the above
lemma are satisfied. It is clear that the following implications on submodules of a
module hold:

Direct summand =⇒ ss-supplement =⇒ supplement =⇒ Rad-supplement

We call a module M ss-supplemented if every submodule of M has an ss-
supplement in M . A submodule U of a module M has ample ss-supplements in
M if every submodule V of M such that M = U + V contains an ss-supplement
of U in M . We call a module M amply ss-supplemented if every submodule of
M has ample ss-supplements in M . It is clear that every ss-supplemented mod-
ule is supplemented. Of course there exists the same relationship between amply
ss-supplemented modules and amply supplemented modules. Later we shall give
examples of (amply) supplemented modules which are not (amply) ss-supplemented
(see Example 17 and Example 18).
In section 3 we characterize ss-supplemented and amply ss-supplemented mod-

ules. For modules with small radical, we give some conditions which are equivalent
to being an ss-supplemented module in Theorem 20. It follows that a finitely
generated module M is ss-supplemented if and only if it is supplemented and
Rad(M) ⊆ Soc(M). Any direct sum of strongly local modules is ss-supplemented
and coatomic. A moduleM is amply ss-supplemented if and only if every submod-
ule of the moduleM is ss-supplemented. We show that a ring R is semiperfect and
Rad(R) ⊆ Soc(RR) if and only if every left R-module is (amply) ss-supplemented.

2. Strongly Local Modules and Rings

As we mentioned at introduction, we denote by Socs(M) the sum of all simple
submodules of a module M that are small in M . Then we have:
Let M be a non-zero module. M is called indecomposable if the only direct

summands of M are 0 and M .

Lemma 4. Let M be an indecomposable module. Then M is simple or Soc(M) ⊆
Rad(M).

Proof. Suppose that M is not simple. Let M = Soc(M) +X for some submodule
X of M . Since Soc(M) is semisimple, there exists a submodule Y of Soc(M) such
that Soc(M) = (Soc(M)∩X)⊕Y . Therefore,M = Soc(M)+X = [(Soc(M)∩X)⊕
Y ]+X = X⊕Y . SinceM is indecomposable and not simple, it follows that Y = 0.
It means that X =M . Hence Soc(M) << M , that is, Soc(M) ⊆ Rad(M). �

Using Lemma 2 and Lemma 4, we have the following result.
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Corollary 5. Let M be a local module which is not simple. Then Socs(M) =
Soc(M).

Recall that a module M is called radical if M has no maximal submodules, that
is, M = Rad(M). Let P (M) be the sum of all radical submodules of M . It is easy
to see that P (M) is the largest radical submodule of M . If P (M) = 0, M is called
reduced.

Proposition 6. Let M be a strongly local module. Then M is reduced.

Proof. Since M is strongly local, we get P (M) ⊆ Rad(M) ⊆ Soc(M). This implies
that P (M) is semisimple and so P (M) = Rad(P (M)) = 0. This completes the
proof. �

Note that the condition “strongly”in the above proposition is necessary. The
following example shows that in general a local module need not be reduced.

Example 7. Let K be a field. In the polynomial ring K[x1, x2, . . .] with countably
many indeterminates xn, n ∈ Z+, consider the ideal I = (x21, x22 − x1, x23 − x2, · · · )
generated by x21 and x

2
n+1 − xn for each n ∈ Z+. Then as shown in [?, Example

6.2], the quotient ring R = K[x1,x2,...]
I is a local ring with the unique maximal ideal

J = (x1,x2,...)
I = J2. Let M be the left R-module RR. Then M is a local module.

On the other hand, M is not reduced because P (M) = Rad(J) = J 6= 0.

Proposition 8. Every factor module of a strongly local module is strongly local.

Proof. Let M be a strongly local module and N be a submodule of M . Then the
factor module M

N is local. Since Rad(M) is the unique maximal submodule of M ,

it follows from [7, 21.2 (1)] that Rad(MN ) =
Rad(M)

N ⊆ Soc(M)
N = π(Soc(M)) ⊆

Soc(MN ), where π : M −→ M
N is the canonical projection. Hence M

N is strongly
local. �

Proposition 9. Let R be a left strongly local ring. Then (Rad(R))2 = 0. In
particular, Rad(R) is nilpotent.

Proof. Since Rad(R) ⊆ Soc(RR), it follows from [7, 21.12 (4)] that (Rad(R))2 = 0.
It means that Rad(R) is nilpotent. �

Recall from [7] that an ideal I of a ring R is right t-nilpotent if for every sequence
a1, a2, ..., ak of elements in I, there is a k ∈ Z+ with a1a2...ak = 0. Similarly left
t-nilpotent is defined. Following [7, 43.9], R is called left perfect (respectively,
right perfect) if R is semilocal and Rad(R) is right t-nilpotent (respectively, left
t-nilpotent). Here a ring R is semilocal if R

Rad(R) is an artinian semisimple ring (see
[4]). Note that nilpotent ideals are left and right t-nilpotent. Using this fact, we
have the following:

Corollary 10. Every left strongly local ring is left perfect and right perfect.
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Proof. Let R be a left strongly local ring. Since local rings are semilocal, it follows
from Proposition 9 that R is left perfect and right perfect. �
It is well known that an artinian commutative domain is field. We have:

Proposition 11. A strongly local commutative domain is field.

Proof. Let R be a strongly local commutative domain and a be any element of R.
If a ∈ R\Rad(R), we can write Ra = R because R is local. Therefore, a is an
invertible element of R. Suppose that a ∈ Rad(R). It follows from Proposition 9
that a2 ∈ (Rad(R))2 = 0. By the hypothesis, we get a = 0. Hence, R is field. �

3. SS-Supplemented Modules

It is known that a ring R is semiperfect if and only if every finitely generated
R-module is (amply) supplemented (see [7, 42.6]). In this section we obtain new
characterizations of semiperfect rings via their ss-supplemented modules.
Recall that for a maximal submodule U of a module M , a submodule V of M

is a supplement of U in M if and only if M = U + V and V is local (see [7, 41.1
(3)]). Analogous to that we have:

Proposition 12. Let M be a module and U be a maximal submodule of M . A
submodule V of M is an ss-supplement of U in M if and only if M = U + V and
V is strongly local.

Proof. Let V be an ss-supplement of U in M . By [7, 41.1.(3)], V is local and
U ∩V = Rad(V ) is the unique maximal submodule of V . Since U ∩V is semisimple,
we have Rad(V ) ⊆ Soc(V ). Thus V is strongly local.
Conversely, since V is local and M = U + V , we can write U ∩ V ⊆ Rad(V ). It

follows from assumption that U ∩ V is semisimple. Hence, V is an ss-supplement
of U in M . �
Now, we give examples of (amply) supplemented modules which are not (amply)

ss-supplemented. We first need the following facts.

Lemma 13. Let M be an ss-supplemented module and N be a small submodule of
M . Then N ⊆ Socs(M).
Proof. By the assumption, M is the unique ss-supplement of N in M and so N ∩
M = N is semisimple. Hence, N ⊆ Socs(M) by Lemma 2. �
The following result is a direct consequence of Lemma 13.

Corollary 14. Let M be an ss-supplemented module and Rad(M) << M . Then
Rad(M) ⊆ Soc(M).
It is well known that every local module is amply supplemented. Now we give

an analogous characterization of this fact for amply ss-supplemented modules.

Proposition 15. Every strongly local module is amply ss-supplemented.
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Proof. Let M be a strongly local module. Then, M is local and so it is amply
supplemented. Note that M has no supplement submodule except for 0 and M .
Since Rad(M) ⊆ Soc(M), M is amply ss-supplemented. �

Proposition 16. Let R be a ring and M be a hollow R-module. M is (amply)
ss-supplemented if and only if it is strongly local.

Proof. Suppose that M is ss-supplemented. Let m ∈ Rad(M). Then we get
Rm << M . Since M is ss-supplemented, it follows from Lemma 13 that Rm ⊆
Socs(M). It means that m ∈ Soc(M) and so Rad(M) ⊆ Soc(M). Suppose that
M = Rad(M). Since M = Rad(M) = Soc(M) and the radical of a semisimple
module is zero, we have that M = 0. This is a contradiction because M is hollow.
It means that M 6= Rad(M), that is, M is local by [7, 41.4]. Therefore M is
strongly local. The converse follows from Proposition 15. �

Example 17. For any prime integer p, consider the left Z-module M = Zp∞ .
Note that M is a hollow module which is not local. Since hollow modules are
(amply) supplemented, M is (amply) supplemented. However, M is not (amply)
ss-supplemented module by Proposition 16.

Every artinian module is supplemented. The next example shows that in general
artinian modules need not to be ss-supplemented.

Example 18. Let M be the Z-module Zpk , for p is any prime integer and k ≥ 3.
Note that M is artinian. Since Socs(Zpk) = Soc(Zpk) ∼= Zp and Rad(M) = pZpk ,
M is not strongly local and so it is not ss-supplemented by Proposition 16.

Lemma 19. Let M be a supplemented module and Rad(M) ⊆ Soc(M). Then M
is ss-supplemented.

Proof. Let U ⊆ M . Since M is supplemented, there exists a submodule V of M
such that M = U +V and U ∩V << V . Then U ∩V ⊆ Rad(V ) ⊆ Rad(M) and so
U ∩ V is semisimple by the assumption. Hence V is an ss-supplement of U in M .
It means that M is ss-supplemented. �

Theorem 20. Let M be a module with Rad(M) << M . Then the following state-
ments are equivalent:

(1) M is ss-supplemented,
(2) M is supplemented and Rad(M) has an ss-supplement in M ,
(3) M is supplemented and Rad(M) ⊆ Soc(M).

Proof. (1) =⇒ (2) It is clear.
(2) =⇒ (3) It follows from Lemma 13.
(3) =⇒ (1) By Lemma 19. �

Since finitely generated modules have small radical, we have the following result.
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Corollary 21. Let M be a finitely generated module. Then M is ss-supplemented
if and only if it is supplemented and Rad(M) ⊆ Soc(M).

Next, in order to prove that every finite sum of ss-supplemented modules is
ss-supplemented, we use the following standard lemma (see, [7, 41.2]).

Lemma 22. Let M be a module and M1, U be submodules of M with M1 ss-
supplemented. If M1+U has an ss-supplement in M , U also has an ss-supplement
in M .

Proof. Suppose that X is an ss-supplement of M1 + U in M and Y is an ss-
supplement of (X+U)∩M1 inM1. ThenM = X+Y +U and (X+Y )∩U << X+Y .
Moreover, X ∩ (Y + U) is semisimple as a submodule of the semisimple module
X ∩ (M1 + U). Note that Y ∩ [(X + U) ∩ M1] = Y ∩ (X + U) is semisimple.
It follows from [3, 8.1.5] that (X + Y ) ∩ U is semisimple. Hence X + Y is an
ss-supplement of U in M . �

Proposition 23. Let M1, M2 be any submodules of a module M such that M =
M1 +M2. Then if M1 and M2 are ss-supplemented, M is ss-supplemented.

Proof. Let U be any submodule of M . The trivial submodule 0 is ss-supplement
of M = M1 +M2 + U in M . Since M1 is ss-supplemented, M2 + U has an ss-
supplement in M by Lemma 22. Again applying Lemma 22, we also have that U
has an ss-supplement in M . This shows that M is ss-supplemented. �

Using this fact we obtain the following corollary.

Corollary 24. Every finite sum of ss-supplemented modules is ss-supplemented.

Now we give an example of an ss-supplemented module which is not strongly
local.

Example 25. The Z-module M = Z4⊕Z4 is ss-supplemented as a sum of strongly
local modules. However, M is not (strongly) local.

Then we have the following proper implications on modules hold:

Proposition 26. If M is a (amply) ss-supplemented module, then every factor
module of M is (amply) ss-supplemented.
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Proof. Let M be an ss-supplemented module and M
L be a factor module of M .

By the assumption, for any submodule U of M which contains L, there exists a
submodule V of M such that M = U + V , U ∩ V << V and U ∩ V is semisimple.
Let π : M −→ M

L be the canonical projection. Then we have that M
L = U

L +
V+L
L

and U
L ∩

V+L
L = (U∩V )+L

L = π(U ∩V ) << π(V ) = V+L
L by [7, 19.3(4)]. Since U ∩V

is semisimple, it follows from [3, 8.1.5] that π(U ∩ V ) = (U∩V )+L
L = U

L ∩
V+L
L is

semisimple. That is, V+LL is an ss-supplement of UL in
M
L , as required.

By adapting this argument we can prove similarly that if M is amply ss-supple-
mented, then so is every factor module of M . �

Recall that a module M is said to be coatomic if every proper submodule of M
is contained in a maximal submodule of M . It is easy to see that every coatomic
module has small radical.
Let p be a prime integer and consider the localization ring R = Z(p) = {ab | a, b ∈

Z and p - b}. Note that R is a local ring. Let M be the left R-module R(N). Then
M is the direct sum of local submodules but it is not supplemented. Since R is not
perfect, Rad(M) is not small in M and so M is not also coatomic. However, any
arbitrary direct sum of strongly local modules is ss-supplemented and coatomic, as
the next result shows.

Theorem 27. Let M =
⊕

i∈IMi, where each Mi is a strongly local module. Then,
M is ss-supplemented and coatomic.

Proof. SinceMi is strongly local for every i ∈ I, it is local and Rad(Mi) ⊆ Soc(Mi)
and so Rad(M) =

⊕
i∈I Rad(Mi) ⊆

⊕
i∈I Soc(Mi) = Soc(M) by [7, 21.6 (5) and

21.2 (5)]. Applying Lemma 1, we get that Rad(M) is a small submodule of M .
Since strongly local modules are local, it follows from [10, Theorem 1.4 (A)] that
M is supplemented. Hence, M is ss-supplemented by Theorem 20.
Let U be a proper submodule of M . It follows from [7, 41.1 (6)] that U is

contained in a maximal submodule of M , that is, M is coatomic. �

Let M be a module. A module N is called M -generated if there exists an
epimorphism f :M (I) −→ N for some index set I.

Corollary 28. Let M be a strongly local module. Then every M -generated module
is ss-supplemented and coatomic.

Proof. Suppose that N is M -generated. Then, there exists an epimorphism f :
M (I) −→ N for some index set I. By Theorem 27, M (I) is ss-supplemented and
coatomic. Hence N is ss-supplemented by Proposition 26 and it is coatomic by [10,
Lemma 1.5 (a)]. �

Corollary 29. Let R be a left strongly local ring. Then every left R-module is
ss-supplemented.
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Proof. Since all left R-modules are R-generated, the proof follows from Corollary
28. �

A submodule U of a moduleM is said to be cofinite ifM/U is finitely generated
(see [1]). Note that maximal submodules of M are cofinite.

Theorem 30. The following statements are equivalent for a module M :
(1) M is the sum of all strongly local submodules,
(2) M is ss-supplemented and coatomic,
(3) M is coatomic and every cofinite submodule of M has an ss-supplement in

M ,
(4) M is coatomic and every maximal submodule of M has an ss-supplement

in M.

Proof. (1) =⇒ (2) Let M =
∑

i∈IMi, where each Mi is strongly local submodules.
Put N =

⊕
i∈IMi. Then, by Theorem 27, N is ss-supplemented and coatomic.

Now we consider the epimorphism f : N −→ M via f((mi)i∈I) =
∑

i∈I mi for all
(mi)i∈I ∈ N . It follows from Proposition 26 and [10, Lemma 1.5 (a)] that M is
ss-supplemented and coatomic.
(2) =⇒ (3) =⇒ (4) are clear.
(4) =⇒ (1) Let S be the sum of all strongly local submodules of M . Assume

that S 6=M . Since M is coatomic, there exists a maximal submodule K of M with
S ⊆ K. By (4), K has an ss-supplement, say V , in M . It follows from Proposition
12 that V is strongly local. Therefore, V ⊆ S ⊆ K, a contradiction. �

The following fact is a direct consequence of Theorem 30.

Corollary 31. For a coatomic module M , the following statements are equivalent:
(1) M is the sum of all strongly local submodules,
(2) M is ss-supplemented,
(3) Every cofinite (maximal) submodule of M has an ss-supplement in M .

A ring R is called left max if every non-zero left R-module has a maximal sub-
module. Note that if R is a left max ring, then every left R-module is coatomic.
Using this fact and Corollary 31, we obtain the following result.

Corollary 32. Let R be a left max ring and M be a non-zero left R-module.
Then M is the sum of all strongly local submodules of M if and only if it is ss-
supplemented.

Proposition 33. Let M be a module. If every submodule of M is ss-supplemented,
then M is amply ss-supplemented.

Proof. Let U and V be two submodules of M such that M = U + V . Since V is
ss-supplemented, there exists a submodule V

′
of V such that V = (U ∩ V ) + V

′
,

U∩V ′
<< V

′
and U∩V ′

is semisimple. Note thatM = U+V = U+((U∩V )+V ′
) =
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U + V
′
. It means that U has ample ss-supplements in M . Hence M is amply ss-

supplemented. �
Lemma 34. Let M be amply ss-supplemented module and V be an ss-supplement
submodule in M . Then V is amply ss-supplemented.

Proof. Let V be an ss-supplement of a submodule U of M . Let X and Y be
submodules of V such that V = X + Y . Then M = (U + X) + Y . Since M is
amply ss-supplemented, U + X has an ss-supplement Y

′ ⊆ Y in M . It follows
that X + Y

′ ⊆ V . By the minimality of V , we have V = X + Y
′
. In addition,

X ∩ Y ′ ⊆ (U + X) ∩ Y ′
<< Y

′
, that is, X ∩ Y ′

<< Y
′
. Since (U + X) ∩ Y ′

is semisimple, X ∩ Y ′
is also semisimple by [3, 8.1.5]. It means that Y

′
is an

ss-supplement of X in V . Finally, V is amply ss-supplemented. �
The next result gives a useful characterization of amply ss-supplemented mod-

ules.

Theorem 35. Let M be a module. Then, M is amply ss-supplemented if and only
if every submodule U of M is of the form U = X +Y , where X is ss-supplemented
and Y ⊆ Socs(M).
Proof. Let U be a submodule of M . Since M is ss-supplemented, U has an ss-
supplement V inM . ThenM = U+V . By the assumption, there exists a submod-
ule X of U such that X is an ss-supplement of V in M . Put Y = U ∩ V . Since V
is an ss-supplement of U in M , we have that Y ⊆ Socs(V ) ⊆ Socs(M). Applying
the modular law, we get U = U ∩M = U ∩ (X + V ) = X + U ∩ V = X + Y . Note
that X is ss-supplemented by Lemma 34.
Conversely, let U be a submodule ofM . By the assumption, there exist submod-

ules X and Y of M such that U = X + Y , X ss-supplemented and Y ⊆ Socs(M).
By Proposition 23, U is ss-supplemented. HenceM is amply ss-supplemented from
Proposition 33. �
The next result is crucial.

Corollary 36. For a module M , the following statements are equivalent:
(1) M is amply ss-supplemented,
(2) Every submodule of M is ss-supplemented,
(3) Every submodule of M is amply ss-supplemented.

Note that it is not in general true that any submodule of an amply supplemented
module is (amply) supplemented. Let R be a local Dedekind domain which is not
field. Suppose that M = R(N). Then, M is not (amply) supplemented. The group

F = R×M can be converted to a ring by the following operation: (x, y) ·
(
x
′
, y

′
)
=

(xx
′
, xy

′
+x

′
y) where x, x

′ ∈ R and y, y′ ∈M . Then F is a commutative local ring
and so F is amply supplemented. Put L = {0}×M . Therefore, L is an ideal of F .
Hence the submodule L of F is not a (amply) supplemented F -module.
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A module M is said to be π-projective if whenever U and V are submodules
of M such that M = U + V , there exists an endomorphism f of M such that
f(M) ⊆ U and (1 − f)(M) ⊆ V . Hollow (local) modules and self-projective mod-
ules are π-projective and π-projective supplemented modules are amply supple-
mented. Similarly, we show that π-projective ss-supplemented modules are amply
ss-supplemented. The proof is virtually the same that of [7, 41.15], but we give it
for completeness.

Proposition 37. Let M be a π-projective and ss-supplemented module. Then M
is amply ss-supplemented.

Proof. Let U and V be submodules of M such that M = U + V . Since M is
π-projective, there exists an endomorphism f of M such that f(M) ⊆ U and
(1 − f)(M) ⊆ V . Note that (1 − f)(U) ⊆ U . Let V

′
be an ss-supplement of U in

M . Then M = f(M) + (1− f)(M) = f(M) + (1− f)(U + V ′
) ⊆ U + (1− f)(V ′

),
so that M = U + (1 − f)(V ′

). Note that (1 − f)(V ′
) is a submodule of V . Let

y ∈ U ∩ (1 − f)(V
′
). Then, y ∈ U and y = (1 − f)(x) = x − f(x) for some

x ∈ V ′
. Next x = y + f(x) ∈ U so that y ∈ (1− f)(U ∩ V ′

). Since U ∩ V ′
<< V

′
,

U ∩ (1 − f)(V ′
) = (1 − f)(U ∩ V ′

) << (1 − f)(V ′
) by [7, 19.3(4)]. By [3, 8.1.5],

U ∩ (1−f)(V ′
) = (1−f)(U ∩V ′

) is semisimple because U ∩V ′
is semisimple. Thus

(1−f)(V ′
) is an ss-supplement of U inM . ThereforeM is amply ss-supplemented

module. �

Since every projective module is π-projective, the following result follows from
Proposition 37 and Corollary 36.

Corollary 38. Any submodule of a projective ss-supplemented module is ss-supple-
mented.

Now, we characterize the rings whose modules are ss-supplemented. Firstly, we
need the following lemmas.

Lemma 39. Let M be a projective module. Then M is ss-supplemented if and
only if it is supplemented and Rad(M) ⊆ Soc(M).

Proof. Suppose that M is projective supplemented module. Therefore we have
Rad(M) << M by [7, 42.5]. Then the proof is obvious from Theorem 20. �

Lemma 40. Let R be a ring. Then every left R-module is ss-supplemented if and
only if every left R-module is the sum of all strongly local submodules.

Proof. Assume that every left R-module M is ss-supplemented. Then, by [7, 43.9],
R is left perfect. This implies that R is a left max ring. Applying Corollary 32,
M is the sum of all strongly local submodules of M . The converse follows from
Theorem 30. �
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Theorem 41. The following statements are equivalent for a ring R:

(1) RR is ss-supplemented,
(2) R is semiperfect and Rad(R) ⊆ Soc(RR),
(3) R is semilocal and Rad(R) ⊆ Soc(RR),
(4) Every projective left R-module is (amply) ss-supplemented,
(5) Every left R-module is (amply) ss-supplemented,
(6) Every left R-module is the sum of all strongly local submodules,
(7) RR is a finite sum of strongly local submodules,
(8) Every maximal left ideal of R has an ss-supplement in R.

Proof. (1) =⇒ (2) =⇒ (3) By Corollary 21 and [7, 42.6].
(3) =⇒ (4) Let M be a projective R-module. Then, by [7, 21.17 (2)], we can

write Rad(M) = Rad(R)M ⊆ Soc(RR)M = Soc(M). From [7, 43.9] and Lemma
39, the proof is completed.
(4) =⇒ (5) follows [7, 18.6] and Proposition 26.
(5) =⇒ (6) By Lemma 40.
(6) =⇒ (7) is obvious.
(7) =⇒ (8) By Theorem 30.
(8) =⇒ (1) By Corollary 31. �
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