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SS-SUPPLEMENTED MODULES

ENGIN KAYNAR, HAMZA CALISICI, AND ERGUL TURKMEN

ABSTRACT. A module M is called ss-supplemented if every submodule U of
M has a supplement V in M such that U NV is semisimple. It is shown
that a finitely generated module M is ss-supplemented iff it is supplemented
and Rad(M) C Soc(M). A module M is called strongly local if it is local
and Rad(M) is semisimple. Any direct sum of strongly local modules is ss-
supplemented and coatomic. A ring R is semiperfect and Rad(R) C Soc(rR)
iff every left R-module is (amply) ss-supplemented iff gR is a finite sum of
strongly local submodules.

1. INTRODUCTION

Throughout this study, all rings are associative with identity and all modules
are unitary left modules. Let R be a ring and M be an R-module. U C M will
mean that U is a submodule of M. Rad(M) and Soc(M) will indicate radical and
socle of M. A submodule N of M is called small in M, denoted N << M, if
M # N + K for every proper submodule K of M. Let U and V be submodules
of M. V is called a supplement of U in M if it is minimal with respect to M =
U+ YV, equivalently M = U4+ V and UNV << V. The module M is called
supplemented if every submodule of M has a supplement in M. A submodule U of
M has ample supplements in M if every submodule L of M such that M =U + L
contains a supplement of U in M. The module M is called amply supplemented
if every submodule of M has ample supplements in M. For characterizations of
supplemented and amply supplemented modules we refer to [7]

A non-zero module M is called hollow if every proper submodule of M is small
in M and is called local if the sum of all proper submodules of M is also a proper
submodule of M. Note that local modules are hollow and hollow modules are clearly
amply supplemented. A ring R is called local ring if gR is a local module.

In [8], Zhou and Zhang generalized the concept of socle of a module M to that of
Socs(M) by considering the class of all simple submodules of M that are small in M
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in place of the class of all simple submodules of M, that is, Socs(M) = > {N <<
M| N is simple}. It is clear that Socs(M) C Rad(M) and Socs(M) C Soc(M).

We call a module M strongly local if it is local and Rad(M) is semisimple. We
call a ring R left strongly local ring if gR is a strongly local module. Then we have
that the following implications on modules:

simple = strongly local = local

Next we mention two examples which show that the above implications are
proper. For the local left Z-module M = Z,4, we have Rad(M) = Soc(M). Hence,
M is strongly local but not simple. On the other hand, for the local left Z-module
M = Zs, Soc(M) is a proper submodule of Rad(M). Thus M is not a strongly
local module.

In section 2 we study on strongly local modules and rings. We show that every
left strongly local ring is left perfect and right perfect. A strongly local commutative
domain is field.

Let U and V be submodules of a module M. V is called a Rad-supplement of
UinMifM=U+VadUNV C Rad(V). Since Socs(V) C Rad(V), it is
of interest to investigate the analogue of this notion by replacing “Rad(V)”with
“Socs(V)”. Now, we give the following result playing a key role in our work as
a proper generalization of direct summands. Firstly, we need the following well
known facts that we include here for completeness.

Lemma 1. Let M be a module and N be a semisimple submodule of M which is
contained in Rad(M). Then N << M.

Proof. Let N + K = M for some submodule K of M. Since N is semisimple,
there exists a submodule N of N such that N = (NN K) ® N'. Hence M =
N+K=[(NNK)®N]+K =N +K. Since NNK = (N NN)NK =
N N(NNK) =0, we have M = N @& K. Tt follows from [7, 21.6 (5)] that
Rad(M) = Rad(N') ® Rad(K) = Rad(K) since Rad(N') C Rad(N) = 0. Then
M =N+ K C Rad(M) + K C K. It means that N << M. O

Lemma 2. Let M be a module. Then Socs(M) = Rad(M) N Soc(M).

Proof. Let a € Rad(M)NSoc(M). Then Ra is semisimple and so there exist n € Z*
and simple submodules S; of M (1 <14 < n) such that Ra =51 ® Sy @& ... ® S, by
[6l Proposition 3.3]. Since Ra is small in M, it follows from [7, 19.3 (2)] that each
S; is small in M. Thus a € Ra C Socg(M). O

Lemma 3. Let M be a module and U, V' be submodules of M. Then the following
statements are equivalent:

(1) M=U+4+V andUNV C Socs(V),

(2) M=U4+V,UNV C Rad(V) and UNYV is semisimple,

B) M=U+V,UNV <<V and UNYV is semisimple.
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Proof. (1) = (2) It follows that U NV C Socs(V) C Rad(V) N Soc(V'). Hence,
we deduce that UNV C Rad(V) and U NV is semisimple.

(2) = (3) It is clear by Lemma

(3) = (1) It is clear by Lemma O

We say that V' an ss-supplement of U in M if the equal conditions in the above
lemma are satisfied. It is clear that the following implications on submodules of a
module hold:

Direct summand = ss-supplement — supplement — Rad-supplement

We call a module M ss-supplemented if every submodule of M has an ss-
supplement in M. A submodule U of a module M has ample ss-supplements in
M if every submodule V' of M such that M = U + V contains an ss-supplement
of U in M. We call a module M amply ss-supplemented if every submodule of
M has ample ss-supplements in M. It is clear that every ss-supplemented mod-
ule is supplemented. Of course there exists the same relationship between amply
ss-supplemented modules and amply supplemented modules. Later we shall give
examples of (amply) supplemented modules which are not (amply) ss-supplemented
(see Example [17] and Example [18)).

In section 3 we characterize ss-supplemented and amply ss-supplemented mod-
ules. For modules with small radical, we give some conditions which are equivalent
to being an ss-supplemented module in Theorem It follows that a finitely
generated module M is ss-supplemented if and only if it is supplemented and
Rad(M) C Soc(M). Any direct sum of strongly local modules is ss-supplemented
and coatomic. A module M is amply ss-supplemented if and only if every submod-
ule of the module M is ss-supplemented. We show that a ring R is semiperfect and
Rad(R) C Soc(rR) if and only if every left R-module is (amply) ss-supplemented.

2. STRONGLY LocAL MODULES AND RINGS

As we mentioned at introduction, we denote by Socs(M) the sum of all simple
submodules of a module M that are small in M. Then we have:

Let M be a non-zero module. M is called indecomposable if the only direct
summands of M are 0 and M.

Lemma 4. Let M be an indecomposable module. Then M is simple or Soc(M) C
Rad(M).

Proof. Suppose that M is not simple. Let M = Soc(M) + X for some submodule
X of M. Since Soc(M) is semisimple, there exists a submodule Y of Soc(M) such
that Soc(M) = (Soc(M)NX)@Y. Therefore, M = Soc(M)+X = [(Soc(M)NX)&®
Y]+ X = Xa@Y. Since M is indecomposable and not simple, it follows that ¥ = 0.
It means that X = M. Hence Soc(M) << M, that is, Soc(M) C Rad(M). O

Using Lemma [2] and Lemma [ we have the following result.
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Corollary 5. Let M be a local module which is not simple. Then Socs(M) =
Soc(M).

Recall that a module M is called radical if M has no maximal submodules, that
is, M = Rad(M). Let P(M) be the sum of all radical submodules of M. It is easy
to see that P(M) is the largest radical submodule of M. If P(M) =0, M is called
reduced.

Proposition 6. Let M be a strongly local module. Then M is reduced.

Proof. Since M is strongly local, we get P(M) C Rad(M) C Soc(M). This implies
that P(M) is semisimple and so P(M) = Rad(P(M)) = 0. This completes the
proof. ([l

Note that the condition “strongly”in the above proposition is necessary. The
following example shows that in general a local module need not be reduced.

Example 7. Let K be a field. In the polynomial ring K|[z1,x2, .. .| with countably
many indeterminates x,,, n € Z*, consider the ideal I = (3,23 — x1,23 — 22, +)
generated by x3 and x| — x,, for each n € Z*. Then as shown in [?, Example
6.2], the quotient ring R = M is a local ring with the unique maximal ideal

J = % = J2. Let M be the left R-module rR. Then M is a local module.
On the other hand, M is not reduced because P(M) = Rad(J) = J # 0.

Proposition 8. FEvery factor module of a strongly local module is strongly local.

Proof. Let M be a strongly local module and N be a submodule of M. Then the
factor module % is local. Since Rad(M) is the unique maximal submodule of M,

it follows from [7, 21.2 (1)] that Rad(%) = RG%M) C SOCJ\(,M) = 7(Soc(M)) C

SOC(%), where 7 : M — % is the canonical projection. Hence % is strongly
local. O

Proposition 9. Let R be a left strongly local ring. Then (Rad(R))?> = 0. In
particular, Rad(R) is nilpotent.

Proof. Since Rad(R) C Soc(rR), it follows from [7, 21.12 (4)] that (Rad(R))? = 0.
It means that Rad(R) is nilpotent. O

Recall from [7] that an ideal I of a ring R is right t-nilpotent if for every sequence
ai,as,...,a of elements in I, there is a k € ZT with aias...ar = 0. Similarly left
t-nilpotent is defined. Following [7, 43.9], R is called left perfect (respectively,
right perfect) if R is semilocal and Rad(R) is right t-nilpotent (respectively, left
t-nilpotent). Here a ring R is semilocal if #}R) is an artinian semisimple ring (see
[]). Note that nilpotent ideals are left and right t-nilpotent. Using this fact, we
have the following:

Corollary 10. Every left strongly local Ting is left perfect and right perfect.
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Proof. Let R be a left strongly local ring. Since local rings are semilocal, it follows
from Proposition [9] that R is left perfect and right perfect. (]

It is well known that an artinian commutative domain is field. We have:
Proposition 11. A strongly local commutative domain is field.

Proof. Let R be a strongly local commutative domain and a be any element of R.
If @ € R\Rad(R), we can write Ra = R because R is local. Therefore, a is an
invertible element of R. Suppose that a € Rad(R). It follows from Proposition |§|
that a? € (Rad(R))? = 0. By the hypothesis, we get a = 0. Hence, R is field. [0

3. SS-SUPPLEMENTED MODULES

It is known that a ring R is semiperfect if and only if every finitely generated
R-module is (amply) supplemented (see [7, 42.6]). In this section we obtain new
characterizations of semiperfect rings via their ss-supplemented modules.

Recall that for a maximal submodule U of a module M, a submodule V' of M
is a supplement of U in M if and only if M = U + V and V is local (see [7, 41.1
(3)]). Analogous to that we have:

Proposition 12. Let M be a module and U be a maximal submodule of M. A
submodule V' of M is an ss-supplement of U in M if and only if M =U +V and
V' is strongly local.

Proof. Let V be an ss-supplement of U in M. By [1, 41.1.(3)], V is local and
UNV = Rad(V) is the unique maximal submodule of V. Since UNV is semisimple,
we have Rad(V) C Soc(V'). Thus V is strongly local.

Conversely, since V is local and M = U + V, we can write UNV C Rad(V). It
follows from assumption that U NV is semisimple. Hence, V is an ss-supplement
of U in M. (|

Now, we give examples of (amply) supplemented modules which are not (amply)
ss-supplemented. We first need the following facts.

Lemma 13. Let M be an ss-supplemented module and N be a small submodule of
M. Then N C Socs(M).

Proof. By the assumption, M is the unique ss-supplement of N in M and so N N
M = N is semisimple. Hence, N C Socs(M) by Lemma O

The following result is a direct consequence of Lemma

Corollary 14. Let M be an ss-supplemented module and Rad(M) << M. Then
Rad(M) C Soc(M).

It is well known that every local module is amply supplemented. Now we give
an analogous characterization of this fact for amply ss-supplemented modules.

Proposition 15. Every strongly local module is amply ss-supplemented.
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Proof. Let M be a strongly local module. Then, M is local and so it is amply
supplemented. Note that M has no supplement submodule except for 0 and M.
Since Rad(M) C Soc(M), M is amply ss-supplemented. O

Proposition 16. Let R be a ring and M be a hollow R-module. M is (amply)
ss-supplemented if and only if it is strongly local.

Proof. Suppose that M is ss-supplemented. Let m € Rad(M). Then we get
Rm << M. Since M is ss-supplemented, it follows from Lemma [T3] that Rm C
Socs(M). It means that m € Soc(M) and so Rad(M) C Soc(M). Suppose that
M = Rad(M). Since M = Rad(M) = Soc(M) and the radical of a semisimple
module is zero, we have that M = 0. This is a contradiction because M is hollow.
It means that M # Rad(M), that is, M is local by [, 41.4]. Therefore M is
strongly local. The converse follows from Proposition [T5] O

Example 17. For any prime integer p, consider the left Z-module M = Zjpoo.
Note that M is a hollow module which is not local. Since hollow modules are
(amply) supplemented, M is (amply) supplemented. However, M is not (amply)
ss-supplemented module by Proposition [16]

Every artinian module is supplemented. The next example shows that in general
artinian modules need not to be ss-supplemented.

Example 18. Let M be the Z-module Z,x, for p is any prime integer and k > 3.
Note that M is artinian. Since Socs(Zyr) = Soc(Zyr) = Zyy and Rad(M) = pZ
M s not strongly local and so it is not ss-supplemented by Proposition [16,

p* s

Lemma 19. Let M be a supplemented module and Rad(M) C Soc(M). Then M
is ss-supplemented.

Proof. Let U C M. Since M is supplemented, there exists a submodule V' of M
such that M =U+V and UNV << V. Then UNV C Rad(V) C Rad(M) and so
U NV is semisimple by the assumption. Hence V is an ss-supplement of U in M.
It means that M is ss-supplemented. O

Theorem 20. Let M be a module with Rad(M) << M. Then the following state-
ments are equivalent:
(1) M is ss-supplemented,

(2) M is supplemented and Rad(M) has an ss-supplement in M,
(3) M is supplemented and Rad(M) C Soc(M).

Proof. (1) = (2) It is clear.
(2) = (3) It follows from Lemma [13]
(3) = (1) By Lemmal[19 O

Since finitely generated modules have small radical, we have the following result.
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Corollary 21. Let M be a finitely generated module. Then M is ss-supplemented
if and only if it is supplemented and Rad(M) C Soc(M).

Next, in order to prove that every finite sum of ss-supplemented modules is
ss-supplemented, we use the following standard lemma (see, [7, 41.2]).

Lemma 22. Let M be a module and My, U be submodules of M with My ss-
supplemented. If M1+ U has an ss-supplement in M, U also has an ss-supplement
i M.

Proof. Suppose that X is an ss-supplement of M7 + U in M and Y is an ss-
supplement of (X+U)NMj in My. Then M = X+Y +U and (X+Y)NU << X+Y.
Moreover, X N (Y + U) is semisimple as a submodule of the semisimple module
X N (M +U). Note that Y N [(X +U)N M| =Y N (X + U) is semisimple.
It follows from [3, 8.1.5] that (X +Y) N U is semisimple. Hence X + Y is an
ss-supplement of U in M. O

Proposition 23. Let My, Ms be any submodules of a module M such that M =
My + M. Then if My and My are ss-supplemented, M is ss-supplemented.

Proof. Let U be any submodule of M. The trivial submodule 0 is ss-supplement
of M = My + My +U in M. Since M; is ss-supplemented, M5 + U has an ss-
supplement in M by Lemma Again applying Lemma we also have that U
has an ss-supplement in M. This shows that M is ss-supplemented. (Il

Using this fact we obtain the following corollary.
Corollary 24. FEvery finite sum of ss-supplemented modules is ss-supplemented.

Now we give an example of an ss-supplemented module which is not strongly
local.

Example 25. The Z-module M = Z4® Zy4 is ss-supplemented as a sum of strongly
local modules. However, M is not (strongly) local.

Then we have the following proper implications on modules hold:

strongly local

T

local ss — supplemented

S

supplemented

Proposition 26. If M is a (amply) ss-supplemented module, then every factor
module of M is (amply) ss-supplemented.
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Proof. Let M be an ss-supplemented module and % be a factor module of M.
By the assumption, for any submodule U of M which contains L, there exists a
submodule V of M such that M =U +V,UNV <<V and U NV is semisimple.
Let m: M — % be the canonical projection. Then we have that % = % + %
and ¥ YL = % =7m(UNV) << a(V) =YL by [7, 19.3(4)]. Since UNV
is semisimple, it follows from [3], 8.1.5] that #(U N V) = % =Yn YL g
semisimple. That is, VfL is an ss-supplement of % in %, as required.

By adapting this argument we can prove similarly that if M is amply ss-supple-
mented, then so is every factor module of M. O

Recall that a module M is said to be coatomic if every proper submodule of M
is contained in a maximal submodule of M. It is easy to see that every coatomic
module has small radical.

Let p be a prime integer and consider the localization ring R = Z,y = {$| a, b €
Z and p 1 b}. Note that R is a local ring. Let M be the left R-module R™. Then
M is the direct sum of local submodules but it is not supplemented. Since R is not
perfect, Rad(M) is not small in M and so M is not also coatomic. However, any
arbitrary direct sum of strongly local modules is ss-supplemented and coatomic, as
the next result shows.

Theorem 27. Let M = P,.; M;, where each M; is a strongly local module. Then,
M is ss-supplemented and coatomic.

Proof. Since M; is strongly local for every i € I, it is local and Rad(M;) C Soc(M;)
and so Rad(M) = @,c; Rad(M;) C D,c; Soc(M;) = Soc(M) by [T, 21.6 (5) and
21.2 (5)]. Applying Lemma (1} we get that Rad(M) is a small submodule of M.
Since strongly local modules are local, it follows from [10, Theorem 1.4 (A)] that
M is supplemented. Hence, M is ss-supplemented by Theorem

Let U be a proper submodule of M. It follows from [7, 41.1 (6)] that U is
contained in a maximal submodule of M, that is, M is coatomic. O

Let M be a module. A module N is called M -generated if there exists an
epimorphism f : M () — N for some index set I.

Corollary 28. Let M be a strongly local module. Then every M -generated module
s ss-supplemented and coatomic.

Proof. Suppose that N is M-generated. Then, there exists an epimorphism f :
M@ — N for some index set I. By Theorem M@ is ss-supplemented and
coatomic. Hence N is ss-supplemented by Proposition and it is coatomic by [I0}
Lemma 1.5 (a)]. O

Corollary 29. Let R be a left strongly local ring. Then every left R-module is
ss-supplemented.
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Proof. Since all left R-modules are R-generated, the proof follows from Corollary
O

A submodule U of a module M is said to be cofinite if M /U is finitely generated
(see [1]). Note that maximal submodules of M are cofinite.

Theorem 30. The following statements are equivalent for a module M :

(1) M is the sum of all strongly local submodules,

(2) M is ss-supplemented and coatomic,

(3) M is coatomic and every cofinite submodule of M has an ss-supplement in
M,

(4) M is coatomic and every mazimal submodule of M has an ss-supplement
in M.

Proof. (1) = (2) Let M =, ; M;, where each M; is strongly local submodules.
Put N = @,.; M;. Then, by Theorem N is ss-supplemented and coatomic.
Now we consider the epimorphism f : N — M via f((ms)icr) = >_,c; mi for all
(m;)ier € N. It follows from Proposition [26| and [I0, Lemma 1.5 (a)] that M is
ss-supplemented and coatomic.

(2) = (3) = (4) are clear.

(4) = (1) Let S be the sum of all strongly local submodules of M. Assume
that S # M. Since M is coatomic, there exists a maximal submodule K of M with
S C K. By (4), K has an ss-supplement, say V, in M. It follows from Proposition
that V is strongly local. Therefore, V' C S C K, a contradiction. O

The following fact is a direct consequence of Theorem [30}

Corollary 31. For a coatomic module M, the following statements are equivalent:

(1) M is the sum of all strongly local submodules,
(2) M is ss-supplemented,
(3) Every cofinite (maximal) submodule of M has an ss-supplement in M.

A ring R is called left max if every non-zero left R-module has a maximal sub-
module. Note that if R is a left max ring, then every left R-module is coatomic.
Using this fact and Corollary we obtain the following result.

Corollary 32. Let R be a left max ring and M be a non-zero left R-module.
Then M 1is the sum of all strongly local submodules of M if and only if it is ss-
supplemented.

Proposition 33. Let M be a module. If every submodule of M is ss-supplemented,
then M is amply ss-supplemented.

Proof. Let U and V be two submodules of M such that M = U 4 V. Since V is
ss-supplemented, there exists a submodule V' of V such that V = Unv)+ V',
UNV' <<V and UNV" is semisimple. Note that M = U+V = U+((UNV)+V') =
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U+ V'. It means that U has ample ss-supplements in M. Hence M is amply ss-
supplemented. ([l

Lemma 34. Let M be amply ss-supplemented module and V' be an ss-supplement
submodule in M. Then V is amply ss-supplemented.

Proof. Let V' be an ss-supplement of a submodule U of M. Let X and Y be
submodules of V such that V = X +Y. Then M = (U + X) +Y. Since M is
amply ss-supplemented, U + X has an ss-supplement Y' C Y in M. It follows
that X +Y  C V. By the minimality of V, we have V = X + Y. In addition,
XNnY C(WU+X)NY <<Y, thatis, XNY << Y. Since (U+X)NY’
is semisimple, X N Y’ is also semisimple by [3, 8.1.5]. It means that Y’ is an
ss-supplement of X in V. Finally, V is amply ss-supplemented. [

The next result gives a useful characterization of amply ss-supplemented mod-
ules.

Theorem 35. Let M be a module. Then, M is amply ss-supplemented if and only
if every submodule U of M is of the form U = X + Y, where X is ss-supplemented
andY C Socys(M).

Proof. Let U be a submodule of M. Since M is ss-supplemented, U has an ss-
supplement V in M. Then M = U+ V. By the assumption, there exists a submod-
ule X of U such that X is an ss-supplement of V' in M. Put Y =UNV. Since V
is an ss-supplement of U in M, we have that Y C Socs(V) C Socs(M). Applying
the modular law, we get U=UNM=UN(X+V)=X+UNV =X +Y. Note
that X is ss-supplemented by Lemma

Conversely, let U be a submodule of M. By the assumption, there exist submod-
ules X and Y of M such that U = X +Y, X ss-supplemented and Y C Socs(M).
By Proposition[23] U is ss-supplemented. Hence M is amply ss-supplemented from
Proposition [33] O

The next result is crucial.

Corollary 36. For a module M, the following statements are equivalent:
(1) M is amply ss-supplemented,
(2) Every submodule of M is ss-supplemented,
(3) Every submodule of M is amply ss-supplemented.

Note that it is not in general true that any submodule of an amply supplemented
module is (amply) supplemented. Let R be a local Dedekind domain which is not
field. Suppose that M = R™. Then, M is not (amply) supplemented. The group

F = Rx M can be converted to a ring by the following operation: (x,y)- (xl, y/) =
(a:z/, Ty +x/y) where z,2" € Rand y,y € M. Then F is a commutative local ring

and so F' is amply supplemented. Put L = {0} x M. Therefore, L is an ideal of F.
Hence the submodule L of F is not a (amply) supplemented F-module.
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A module M is said to be w-projective if whenever U and V are submodules
of M such that M = U + V, there exists an endomorphism f of M such that
f(M) CU and (1— f)(M) CV. Hollow (local) modules and self-projective mod-
ules are m-projective and m-projective supplemented modules are amply supple-
mented. Similarly, we show that m-projective ss-supplemented modules are amply
ss-supplemented. The proof is virtually the same that of [7, 41.15], but we give it
for completeness.

Proposition 37. Let M be a w-projective and ss-supplemented module. Then M
is amply ss-supplemented.

Proof. Let U and V' be submodules of M such that M = U + V. Since M is
m-projective, there exists an endomorphism f of M such that f(M) C U and
(1 — f)(M) C V. Note that (1 — f)(U) C U. Let V' be an ss-supplement of U in
M. Then M = f(M) + (1= f)(M) = f(M) + (1 — )U+V) CU +(1- V),
so that M = U + (1 — f)(V'). Note that (1 — f)(V') is a submodule of V. Let
yeUN@A—f)(V). Then, y € U and y = (1 — f)(z) = = — f(z) for some
zeV . Nextz=y+ f(z)eUsothatye (1— f)(UNV'). Since UNV << V',
Un1-HV)=0-HUNV) << (1 - £V') by [T 19.3(4)]. By [3, 8.1.5],
UNn(1l—f) (V)= (1-f)(UNV") is semisimple because UNV" is semisimple. Thus
(1—f)(V') is an ss-supplement of U in M. Therefore M is amply ss-supplemented
module. d

Since every projective module is w-projective, the following result follows from
Proposition 37| and Corollary [36]

Corollary 38. Any submodule of a projective ss-supplemented module is ss-supple-
mented.

Now, we characterize the rings whose modules are ss-supplemented. Firstly, we
need the following lemmas.

Lemma 39. Let M be a projective module. Then M is ss-supplemented if and
only if it is supplemented and Rad(M) C Soc(M).

Proof. Suppose that M is projective supplemented module. Therefore we have
Rad(M) << M by [7, 42.5]. Then the proof is obvious from Theorem O

Lemma 40. Let R be a ring. Then every left R-module is ss-supplemented if and
only if every left R-module is the sum of all strongly local submodules.

Proof. Assume that every left R-module M is ss-supplemented. Then, by [7, 43.9],
R is left perfect. This implies that R is a left max ring. Applying Corollary
M is the sum of all strongly local submodules of M. The converse follows from
Theorem O
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Theorem 41. The following statements are equivalent for a ring R:

(1) rR is ss-supplemented,

(2) R is semiperfect and Rad(R) C Soc(rR),

(3) R is semilocal and Rad(R) C Soc(rR),

(4) Ewery projective left R-module is (amply) ss-supplemented,

(5) Ewery left R-module is (amply) ss-supplemented,

(6) FEwvery left R-module is the sum of all strongly local submodules,
(7) rR is a finite sum of strongly local submodules,

(8) Ewvery mazimal left ideal of R has an ss-supplement in R.

Proof. (1) => (2) = (3) By Corollary 1] and [7, 42.6].

(3) = (4) Let M be a projective R-module. Then, by [7, 21.17 (2)], we can

write Rad(M) = Rad(R)M C Soc(rR)M = Soc(M). From [7, 43.9] and Lemma

B9

the proof is completed.

(4) = (5) follows [7} 18.6] and Proposition [26]

(5) = (6) By Lemma 0]

(6) = (7) is obvious.

(7) = (8) By Theorem

(8) = (1) By Corollary O
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