Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 69, Number 1, Pages 473–485 (2020) DOI: 10.31801/cfsuasmas.585727 ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

SS-SUPPLEMENTED MODULES

ENGIN KAYNAR, HAMZA ÇALIŞICI, AND ERGÜL TÜRKMEN

ABSTRACT. A module M is called ss-supplemented if every submodule U of M has a supplement V in M such that $U \cap V$ is semisimple. It is shown that a finitely generated module M is ss-supplemented iff it is supplemented and $Rad(M) \subseteq Soc(M)$. A module M is called st-rongly local if it is local and Rad(M) is semisimple. Any direct sum of strongly local modules is ss-supplemented and coatomic. A ring R is semiperfect and $Rad(R) \subseteq Soc(R)$ iff every left R-module is (amply) ss-supplemented iff R is a finite sum of strongly local submodules.

1. Introduction

Throughout this study, all rings are associative with identity and all modules are unitary left modules. Let R be a ring and M be an R-module. $U \subseteq M$ will mean that U is a submodule of M. Rad(M) and Soc(M) will indicate radical and socle of M. A submodule N of M is called small in M, denoted N << M, if $M \neq N + K$ for every proper submodule K of M. Let U and V be submodules of M. V is called a supplement of U in M if it is minimal with respect to M = U + V, equivalently M = U + V and $U \cap V << V$. The module M is called Supplement if every submodule of M has a supplement in M. A submodule M of M has ample Supplement in M if every submodule M is called M such that M = U + U contains a supplement of M has ample supplements in M. For characterizations of supplemented and amply supplemented modules we refer to M

A non-zero module M is called *hollow* if every proper submodule of M is small in M and is called *local* if the sum of all proper submodules of M is also a proper submodule of M. Note that local modules are hollow and hollow modules are clearly amply supplemented. A ring R is called *local ring* if R is a local module.

In [8], Zhou and Zhang generalized the concept of socle of a module M to that of $Soc_s(M)$ by considering the class of all simple submodules of M that are small in M

Received by the editors: July 02, 2019; Accepted: November 20, 2019. 2010 Mathematics Subject Classification. Primary 16D10, 16D60; Secondary 16D99. Key words and phrases. semisimple module, ss-supplemented module, strongly local module.

©2020 Ankara University

in place of the class of all simple submodules of M, that is, $Soc_s(M) = \sum \{N << M \mid N \text{ is } simple \}$. It is clear that $Soc_s(M) \subseteq Rad(M)$ and $Soc_s(M) \subseteq Soc(M)$.

We call a module M strongly local if it is local and Rad(M) is semisimple. We call a ring R left strongly local ring if R is a strongly local module. Then we have that the following implications on modules:

```
simple \Longrightarrow strongly local \Longrightarrow local
```

Next we mention two examples which show that the above implications are proper. For the local left \mathbb{Z} -module $M = \mathbb{Z}_4$, we have Rad(M) = Soc(M). Hence, M is strongly local but not simple. On the other hand, for the local left \mathbb{Z} -module $M = \mathbb{Z}_8$, Soc(M) is a proper submodule of Rad(M). Thus M is not a strongly local module.

In section 2 we study on strongly local modules and rings. We show that every left strongly local ring is left perfect and right perfect. A strongly local commutative domain is field.

Let U and V be submodules of a module M. V is called a Rad-supplement of U in M if M = U + V and $U \cap V \subseteq Rad(V)$. Since $Soc_s(V) \subseteq Rad(V)$, it is of interest to investigate the analogue of this notion by replacing "Rad(V)" with " $Soc_s(V)$ ". Now, we give the following result playing a key role in our work as a proper generalization of direct summands. Firstly, we need the following well known facts that we include here for completeness.

Lemma 1. Let M be a module and N be a semisimple submodule of M which is contained in Rad(M). Then $N \ll M$.

Proof. Let N+K=M for some submodule K of M. Since N is semisimple, there exists a submodule $N^{'}$ of N such that $N=(N\cap K)\oplus N^{'}$. Hence $M=N+K=[(N\cap K)\oplus N^{'}]+K=N^{'}+K$. Since $N^{'}\cap K=(N^{'}\cap N)\cap K=N^{'}\cap (N\cap K)=0$, we have $M=N^{'}\oplus K$. It follows from $[7,21.6\ (5)]$ that $Rad(M)=Rad(N^{'})\oplus Rad(K)=Rad(K)$ since $Rad(N^{'})\subseteq Rad(N)=0$. Then $M=N+K\subseteq Rad(M)+K\subseteq K$. It means that N<< M.

Lemma 2. Let M be a module. Then $Soc_s(M) = Rad(M) \cap Soc(M)$.

Proof. Let $a \in Rad(M) \cap Soc(M)$. Then Ra is semisimple and so there exist $n \in \mathbb{Z}^+$ and simple submodules S_i of M $(1 \le i \le n)$ such that $Ra = S_1 \oplus S_2 \oplus ... \oplus S_n$ by [6, Proposition 3.3]. Since Ra is small in M, it follows from [7, 19.3 (2)] that each S_i is small in M. Thus $a \in Ra \subseteq Soc_s(M)$.

Lemma 3. Let M be a module and U, V be submodules of M. Then the following statements are equivalent:

- (1) M = U + V and $U \cap V \subseteq Soc_s(V)$,
- (2) M = U + V, $U \cap V \subseteq Rad(V)$ and $U \cap V$ is semisimple,
- (3) M = U + V, $U \cap V \ll V$ and $U \cap V$ is semisimple.

Proof. (1) \Longrightarrow (2) It follows that $U \cap V \subseteq Soc_s(V) \subseteq Rad(V) \cap Soc(V)$. Hence, we deduce that $U \cap V \subseteq Rad(V)$ and $U \cap V$ is semisimple.

- $(2) \Longrightarrow (3)$ It is clear by Lemma 1.
- $(3) \Longrightarrow (1)$ It is clear by Lemma 2

We say that V an ss-supplement of U in M if the equal conditions in the above lemma are satisfied. It is clear that the following implications on submodules of a module hold:

Direct summand \implies ss-supplement \implies supplement \implies Rad-supplement

We call a module M ss-supplemented if every submodule of M has an ss-supplement in M. A submodule U of a module M has ample ss-supplements in M if every submodule V of M such that M = U + V contains an ss-supplement of U in M. We call a module M amply ss-supplemented if every submodule of M has ample ss-supplements in M. It is clear that every ss-supplemented module is supplemented. Of course there exists the same relationship between amply ss-supplemented modules and amply supplemented modules. Later we shall give examples of (amply) supplemented modules which are not (amply) ss-supplemented (see Example 17 and Example 18).

In section 3 we characterize ss-supplemented and amply ss-supplemented modules. For modules with small radical, we give some conditions which are equivalent to being an ss-supplemented module in Theorem 20. It follows that a finitely generated module M is ss-supplemented if and only if it is supplemented and $Rad(M) \subseteq Soc(M)$. Any direct sum of strongly local modules is ss-supplemented and coatomic. A module M is amply ss-supplemented if and only if every submodule of the module M is ss-supplemented. We show that a ring R is semiperfect and $Rad(R) \subseteq Soc(R)$ if and only if every left R-module is (amply) ss-supplemented.

2. Strongly Local Modules and Rings

As we mentioned at introduction, we denote by $Soc_s(M)$ the sum of all simple submodules of a module M that are small in M. Then we have:

Let M be a non-zero module. M is called indecomposable if the only direct summands of M are 0 and M.

Lemma 4. Let M be an indecomposable module. Then M is simple or $Soc(M) \subseteq Rad(M)$.

Proof. Suppose that M is not simple. Let M = Soc(M) + X for some submodule X of M. Since Soc(M) is semisimple, there exists a submodule Y of Soc(M) such that $Soc(M) = (Soc(M) \cap X) \oplus Y$. Therefore, $M = Soc(M) + X = [(Soc(M) \cap X) \oplus Y] + X = X \oplus Y$. Since M is indecomposable and not simple, it follows that Y = 0. It means that X = M. Hence Soc(M) << M, that is, $Soc(M) \subseteq Rad(M)$. \square

Using Lemma 2 and Lemma 4, we have the following result.

Corollary 5. Let M be a local module which is not simple. Then $Soc_s(M) = Soc(M)$.

Recall that a module M is called radical if M has no maximal submodules, that is, M = Rad(M). Let P(M) be the sum of all radical submodules of M. It is easy to see that P(M) is the largest radical submodule of M. If P(M) = 0, M is called reduced.

Proposition 6. Let M be a strongly local module. Then M is reduced.

Proof. Since M is strongly local, we get $P(M) \subseteq Rad(M) \subseteq Soc(M)$. This implies that P(M) is semisimple and so P(M) = Rad(P(M)) = 0. This completes the proof.

Note that the condition "strongly" in the above proposition is necessary. The following example shows that in general a local module need not be reduced.

Example 7. Let K be a field. In the polynomial ring $K[x_1, x_2, \ldots]$ with countably many indeterminates x_n , $n \in \mathbb{Z}^+$, consider the ideal $I = (x_1^2, x_2^2 - x_1, x_3^2 - x_2, \cdots)$ generated by x_1^2 and $x_{n+1}^2 - x_n$ for each $n \in \mathbb{Z}^+$. Then as shown in [?, Example 6.2], the quotient ring $R = \frac{K[x_1, x_2, \ldots]}{I}$ is a local ring with the unique maximal ideal $J = \frac{(x_1, x_2, \ldots)}{I} = J^2$. Let M be the left R-module R. Then M is a local module. On the other hand, M is not reduced because $P(M) = Rad(J) = J \neq 0$.

Proposition 8. Every factor module of a strongly local module is strongly local.

Proof. Let M be a strongly local module and N be a submodule of M. Then the factor module $\frac{M}{N}$ is local. Since Rad(M) is the unique maximal submodule of M, it follows from [7, 21.2 (1)] that $Rad(\frac{M}{N}) = \frac{Rad(M)}{N} \subseteq \frac{Soc(M)}{N} = \pi(Soc(M)) \subseteq Soc(\frac{M}{N})$, where $\pi: M \longrightarrow \frac{M}{N}$ is the canonical projection. Hence $\frac{M}{N}$ is strongly local.

Proposition 9. Let R be a left strongly local ring. Then $(Rad(R))^2 = 0$. In particular, Rad(R) is nilpotent.

Proof. Since $Rad(R) \subseteq Soc(_RR)$, it follows from [7, 21.12 (4)] that $(Rad(R))^2 = 0$. It means that Rad(R) is nilpotent.

Recall from [7] that an ideal I of a ring R is right t-nilpotent if for every sequence $a_1, a_2, ..., a_k$ of elements in I, there is a $k \in \mathbb{Z}^+$ with $a_1a_2...a_k = 0$. Similarly left t-nilpotent is defined. Following [7, 43.9], R is called left perfect (respectively, right perfect) if R is semilocal and Rad(R) is right t-nilpotent (respectively, left t-nilpotent). Here a ring R is semilocal if $\frac{R}{Rad(R)}$ is an artinian semisimple ring (see [4]). Note that nilpotent ideals are left and right t-nilpotent. Using this fact, we have the following:

Corollary 10. Every left strongly local ring is left perfect and right perfect.

Proof. Let R be a left strongly local ring. Since local rings are semilocal, it follows from Proposition 9 that R is left perfect and right perfect.

It is well known that an artinian commutative domain is field. We have:

Proposition 11. A strongly local commutative domain is field.

Proof. Let R be a strongly local commutative domain and a be any element of R. If $a \in R \setminus Rad(R)$, we can write Ra = R because R is local. Therefore, a is an invertible element of R. Suppose that $a \in Rad(R)$. It follows from Proposition 9 that $a^2 \in (Rad(R))^2 = 0$. By the hypothesis, we get a = 0. Hence, R is field. \square

3. SS-Supplemented Modules

It is known that a ring R is semiperfect if and only if every finitely generated R-module is (amply) supplemented (see [7, 42.6]). In this section we obtain new characterizations of semiperfect rings via their ss-supplemented modules.

Recall that for a maximal submodule U of a module M, a submodule V of M is a supplement of U in M if and only if M = U + V and V is local (see [7, 41.1 (3)]). Analogous to that we have:

Proposition 12. Let M be a module and U be a maximal submodule of M. A submodule V of M is an ss-supplement of U in M if and only if M = U + V and V is strongly local.

Proof. Let V be an ss-supplement of U in M. By [7, 41.1.(3)], V is local and $U \cap V = Rad(V)$ is the unique maximal submodule of V. Since $U \cap V$ is semisimple, we have $Rad(V) \subseteq Soc(V)$. Thus V is strongly local.

Conversely, since V is local and M = U + V, we can write $U \cap V \subseteq Rad(V)$. It follows from assumption that $U \cap V$ is semisimple. Hence, V is an ss-supplement of U in M.

Now, we give examples of (amply) supplemented modules which are not (amply) ss-supplemented. We first need the following facts.

Lemma 13. Let M be an ss-supplemented module and N be a small submodule of M. Then $N \subseteq Soc_s(M)$.

Proof. By the assumption, M is the unique ss-supplement of N in M and so $N \cap M = N$ is semisimple. Hence, $N \subseteq Soc_s(M)$ by Lemma 2.

The following result is a direct consequence of Lemma 13.

Corollary 14. Let M be an ss-supplemented module and Rad(M) << M. Then $Rad(M) \subseteq Soc(M)$.

It is well known that every local module is amply supplemented. Now we give an analogous characterization of this fact for amply ss-supplemented modules.

Proposition 15. Every strongly local module is amply ss-supplemented.

Proof. Let M be a strongly local module. Then, M is local and so it is amply supplemented. Note that M has no supplement submodule except for 0 and M. Since $Rad(M) \subseteq Soc(M)$, M is amply ss-supplemented.

Proposition 16. Let R be a ring and M be a hollow R-module. M is (amply) ss-supplemented if and only if it is strongly local.

Proof. Suppose that M is ss-supplemented. Let $m \in Rad(M)$. Then we get Rm << M. Since M is ss-supplemented, it follows from Lemma 13 that $Rm \subseteq Soc_s(M)$. It means that $m \in Soc(M)$ and so $Rad(M) \subseteq Soc(M)$. Suppose that M = Rad(M). Since M = Rad(M) = Soc(M) and the radical of a semisimple module is zero, we have that M = 0. This is a contradiction because M is hollow. It means that $M \neq Rad(M)$, that is, M is local by [7, 41.4]. Therefore M is strongly local. The converse follows from Proposition 15.

Example 17. For any prime integer p, consider the left \mathbb{Z} -module $M = \mathbb{Z}_{p^{\infty}}$. Note that M is a hollow module which is not local. Since hollow modules are (amply) supplemented, M is (amply) supplemented. However, M is not (amply) ss-supplemented module by Proposition 16.

Every artinian module is supplemented. The next example shows that in general artinian modules need not to be ss-supplemented.

Example 18. Let M be the \mathbb{Z} -module \mathbb{Z}_{p^k} , for p is any prime integer and $k \geq 3$. Note that M is artinian. Since $Soc_s(\mathbb{Z}_{p^k}) = Soc(\mathbb{Z}_{p^k}) \cong \mathbb{Z}_p$ and $Rad(M) = p\mathbb{Z}_{p^k}$, M is not strongly local and so it is not ss-supplemented by Proposition 16.

Lemma 19. Let M be a supplemented module and $Rad(M) \subseteq Soc(M)$. Then M is ss-supplemented.

Proof. Let $U \subseteq M$. Since M is supplemented, there exists a submodule V of M such that M = U + V and $U \cap V << V$. Then $U \cap V \subseteq Rad(V) \subseteq Rad(M)$ and so $U \cap V$ is semisimple by the assumption. Hence V is an ss-supplement of U in M. It means that M is ss-supplemented.

Theorem 20. Let M be a module with $Rad(M) \ll M$. Then the following statements are equivalent:

- (1) M is ss-supplemented,
- (2) M is supplemented and Rad(M) has an ss-supplement in M,
- (3) M is supplemented and $Rad(M) \subseteq Soc(M)$.

Proof. $(1) \Longrightarrow (2)$ It is clear.

- $(2) \Longrightarrow (3)$ It follows from Lemma 13.
- $(3) \Longrightarrow (1)$ By Lemma 19.

Since finitely generated modules have small radical, we have the following result.

Corollary 21. Let M be a finitely generated module. Then M is ss-supplemented if and only if it is supplemented and $Rad(M) \subseteq Soc(M)$.

Next, in order to prove that every finite sum of ss-supplemented modules is ss-supplemented, we use the following standard lemma (see, [7, 41.2]).

Lemma 22. Let M be a module and M_1 , U be submodules of M with M_1 ss-supplemented. If $M_1 + U$ has an ss-supplement in M, U also has an ss-supplement in M.

Proof. Suppose that X is an ss-supplement of $M_1 + U$ in M and Y is an ss-supplement of $(X+U)\cap M_1$ in M_1 . Then M = X+Y+U and $(X+Y)\cap U << X+Y$. Moreover, $X \cap (Y+U)$ is semisimple as a submodule of the semisimple module $X \cap (M_1+U)$. Note that $Y \cap [(X+U)\cap M_1] = Y \cap (X+U)$ is semisimple. It follows from [3, 8.1.5] that $(X+Y)\cap U$ is semisimple. Hence X+Y is an ss-supplement of U in M.

Proposition 23. Let M_1 , M_2 be any submodules of a module M such that $M = M_1 + M_2$. Then if M_1 and M_2 are ss-supplemented, M is ss-supplemented.

Proof. Let U be any submodule of M. The trivial submodule 0 is ss-supplement of $M = M_1 + M_2 + U$ in M. Since M_1 is ss-supplemented, $M_2 + U$ has an ss-supplement in M by Lemma 22. Again applying Lemma 22, we also have that U has an ss-supplement in M. This shows that M is ss-supplemented. \square

Using this fact we obtain the following corollary.

Corollary 24. Every finite sum of ss-supplemented modules is ss-supplemented.

Now we give an example of an ss-supplemented module which is not strongly local

Example 25. The \mathbb{Z} -module $M = \mathbb{Z}_4 \oplus \mathbb{Z}_4$ is ss-supplemented as a sum of strongly local modules. However, M is not (strongly) local.

Then we have the following proper implications on modules hold:

Proposition 26. If M is a (amply) ss-supplemented module, then every factor module of M is (amply) ss-supplemented.

Proof. Let M be an ss-supplemented module and $\frac{M}{L}$ be a factor module of M. By the assumption, for any submodule U of M which contains L, there exists a submodule V of M such that M = U + V, $U \cap V << V$ and $U \cap V$ is semisimple. Let $\pi: M \longrightarrow \frac{M}{L}$ be the canonical projection. Then we have that $\frac{M}{L} = \frac{U}{L} + \frac{V + L}{L}$ and $\frac{U}{L} \cap \frac{V + L}{L} = \frac{(U \cap V) + L}{L} = \pi(U \cap V) << \pi(V) = \frac{V + L}{L}$ by [7, 19.3(4)]. Since $U \cap V$ is semisimple, it follows from [3, 8.1.5] that $\pi(U \cap V) = \frac{(U \cap V) + L}{L} = \frac{U}{L} \cap \frac{V + L}{L}$ is semisimple. That is, $\frac{V + L}{L}$ is an ss-supplement of $\frac{U}{L}$ in $\frac{M}{L}$, as required.

By adapting this argument we can prove similarly that if M is amply ss-supplemented, then so is every factor module of M.

Recall that a module M is said to be coatomic if every proper submodule of M is contained in a maximal submodule of M. It is easy to see that every coatomic module has small radical.

Let p be a prime integer and consider the localization ring $R = \mathbb{Z}_{(p)} = \{\frac{a}{b} \mid a, b \in \mathbb{Z} \text{ and } p \nmid b\}$. Note that R is a local ring. Let M be the left R-module $R^{(\mathbb{N})}$. Then M is the direct sum of local submodules but it is not supplemented. Since R is not perfect, Rad(M) is not small in M and so M is not also coatomic. However, any arbitrary direct sum of strongly local modules is ss-supplemented and coatomic, as the next result shows.

Theorem 27. Let $M = \bigoplus_{i \in I} M_i$, where each M_i is a strongly local module. Then, M is ss-supplemented and coatomic.

Proof. Since M_i is strongly local for every $i \in I$, it is local and $Rad(M_i) \subseteq Soc(M_i)$ and so $Rad(M) = \bigoplus_{i \in I} Rad(M_i) \subseteq \bigoplus_{i \in I} Soc(M_i) = Soc(M)$ by [7, 21.6 (5) and 21.2 (5)]. Applying Lemma 1, we get that Rad(M) is a small submodule of M. Since strongly local modules are local, it follows from [10, Theorem 1.4 (A)] that M is supplemented. Hence, M is ss-supplemented by Theorem 20.

Let U be a proper submodule of M. It follows from [7, 41.1 (6)] that U is contained in a maximal submodule of M, that is, M is coatomic.

Let M be a module. A module N is called M-generated if there exists an epimorphism $f: M^{(I)} \longrightarrow N$ for some index set I.

Corollary 28. Let M be a strongly local module. Then every M-generated module is ss-supplemented and coatomic.

Proof. Suppose that N is M-generated. Then, there exists an epimorphism $f: M^{(I)} \longrightarrow N$ for some index set I. By Theorem 27, $M^{(I)}$ is ss-supplemented and coatomic. Hence N is ss-supplemented by Proposition 26 and it is coatomic by [10, Lemma 1.5 (a)].

Corollary 29. Let R be a left strongly local ring. Then every left R-module is ss-supplemented.

Proof. Since all left R-modules are R-generated, the proof follows from Corollary 28.

A submodule U of a module M is said to be *cofinite* if M/U is finitely generated (see [1]). Note that maximal submodules of M are cofinite.

Theorem 30. The following statements are equivalent for a module M:

- (1) M is the sum of all strongly local submodules,
- (2) M is ss-supplemented and coatomic,
- (3) M is coatomic and every cofinite submodule of M has an ss-supplement in M,
- (4) M is coatomic and every maximal submodule of M has an ss-supplement in M.

Proof. (1) \Longrightarrow (2) Let $M = \sum_{i \in I} M_i$, where each M_i is strongly local submodules. Put $N = \bigoplus_{i \in I} M_i$. Then, by Theorem 27, N is ss-supplemented and coatomic. Now we consider the epimorphism $f: N \longrightarrow M$ via $f((m_i)_{i \in I}) = \sum_{i \in I} m_i$ for all $(m_i)_{i \in I} \in N$. It follows from Proposition 26 and [10, Lemma 1.5 (a)] that M is ss-supplemented and coatomic.

- $(2) \Longrightarrow (3) \Longrightarrow (4)$ are clear.
- $(4) \Longrightarrow (1)$ Let S be the sum of all strongly local submodules of M. Assume that $S \neq M$. Since M is coatomic, there exists a maximal submodule K of M with $S \subseteq K$. By (4), K has an ss-supplement, say V, in M. It follows from Proposition 12 that V is strongly local. Therefore, $V \subseteq S \subseteq K$, a contradiction. \square

The following fact is a direct consequence of Theorem 30.

Corollary 31. For a coatomic module M, the following statements are equivalent:

- (1) M is the sum of all strongly local submodules,
- (2) M is ss-supplemented,
- (3) Every cofinite (maximal) submodule of M has an ss-supplement in M.

A ring R is called *left max* if every non-zero left R-module has a maximal sub-module. Note that if R is a left max ring, then every left R-module is coatomic. Using this fact and Corollary 31, we obtain the following result.

Corollary 32. Let R be a left max ring and M be a non-zero left R-module. Then M is the sum of all strongly local submodules of M if and only if it is ss-supplemented.

Proposition 33. Let M be a module. If every submodule of M is ss-supplemented, then M is amply ss-supplemented.

Proof. Let U and V be two submodules of M such that M = U + V. Since V is ss-supplemented, there exists a submodule V' of V such that $V = (U \cap V) + V'$, $U \cap V' << V'$ and $U \cap V'$ is semisimple. Note that $M = U + V = U + ((U \cap V) + V') = U + ((U \cap V) + (U \cap V) + ($

 $U+V^{'}.$ It means that U has ample ss-supplements in M. Hence M is amply ss-supplemented. \Box

Lemma 34. Let M be amply ss-supplemented module and V be an ss-supplement submodule in M. Then V is amply ss-supplemented.

Proof. Let V be an ss-supplement of a submodule U of M. Let X and Y be submodules of V such that V = X + Y. Then M = (U + X) + Y. Since M is amply ss-supplemented, U + X has an ss-supplement $Y' \subseteq Y$ in M. It follows that $X + Y' \subseteq V$. By the minimality of V, we have V = X + Y'. In addition, $X \cap Y' \subseteq (U + X) \cap Y' << Y'$, that is, $X \cap Y' << Y'$. Since $(U + X) \cap Y'$ is semisimple, $X \cap Y'$ is also semisimple by [3, 8.1.5]. It means that Y' is an ss-supplement of X in V. Finally, V is amply ss-supplemented. \square

The next result gives a useful characterization of amply ss-supplemented modules.

Theorem 35. Let M be a module. Then, M is amply ss-supplemented if and only if every submodule U of M is of the form U = X + Y, where X is ss-supplemented and $Y \subseteq Soc_s(M)$.

Proof. Let U be a submodule of M. Since M is ss-supplemented, U has an ss-supplement V in M. Then M = U + V. By the assumption, there exists a submodule X of U such that X is an ss-supplement of V in M. Put $Y = U \cap V$. Since V is an ss-supplement of U in M, we have that $Y \subseteq Soc_s(V) \subseteq Soc_s(M)$. Applying the modular law, we get $U = U \cap M = U \cap (X + V) = X + U \cap V = X + Y$. Note that X is ss-supplemented by Lemma 34.

Conversely, let U be a submodule of M. By the assumption, there exist submodules X and Y of M such that U = X + Y, X ss-supplemented and $Y \subseteq Soc_s(M)$. By Proposition 23, U is ss-supplemented. Hence M is amply ss-supplemented from Proposition 33.

The next result is crucial.

Corollary 36. For a module M, the following statements are equivalent:

- (1) M is amply ss-supplemented,
- (2) Every submodule of M is ss-supplemented,
- (3) Every submodule of M is amply ss-supplemented.

Note that it is not in general true that any submodule of an amply supplemented module is (amply) supplemented. Let R be a local Dedekind domain which is not field. Suppose that $M = R^{(\mathbb{N})}$. Then, M is not (amply) supplemented. The group $F = R \times M$ can be converted to a ring by the following operation: $(x,y) \cdot (x',y') = (xx',xy'+x'y)$ where $x,x' \in R$ and $y,y' \in M$. Then F is a commutative local ring and so F is amply supplemented. Put $L = \{0\} \times M$. Therefore, L is an ideal of F. Hence the submodule L of F is not a (amply) supplemented F-module.

A module M is said to be π -projective if whenever U and V are submodules of M such that M = U + V, there exists an endomorphism f of M such that $f(M) \subseteq U$ and $(1 - f)(M) \subseteq V$. Hollow (local) modules and self-projective modules are π -projective and π -projective supplemented modules are amply supplemented. Similarly, we show that π -projective ss-supplemented modules are amply ss-supplemented. The proof is virtually the same that of [7, 41.15], but we give it for completeness.

Proposition 37. Let M be a π -projective and ss-supplemented module. Then M is amply ss-supplemented.

Proof. Let U and V be submodules of M such that M = U + V. Since M is π -projective, there exists an endomorphism f of M such that $f(M) \subseteq U$ and $(1-f)(M) \subseteq V$. Note that $(1-f)(U) \subseteq U$. Let V' be an ss-supplement of U in M. Then $M = f(M) + (1-f)(M) = f(M) + (1-f)(U+V') \subseteq U + (1-f)(V')$, so that M = U + (1-f)(V'). Note that (1-f)(V') is a submodule of V. Let $Y \in U \cap (1-f)(V')$. Then, $Y \in U$ and Y = (1-f)(X) = X - f(X) for some $X \in V'$. Next $X = Y + f(X) \in U$ so that $Y \in (1-f)(U \cap V')$. Since $Y \in V'$, $Y \in U \cap (1-f)(Y') = (1-f)(U \cap V') < (1-f)(Y')$ by $Y \in V'$ is semisimple. Thus $Y \in U \cap V'$ is an $Y \in V'$ is an $Y \in V'$ is an $Y \in V'$ in $Y \in V'$ is an $Y \in V'$ in $Y \in V'$ in

Since every projective module is π -projective, the following result follows from Proposition 37 and Corollary 36.

Corollary 38. Any submodule of a projective ss-supplemented module is ss-supplemented.

Now, we characterize the rings whose modules are ss-supplemented. Firstly, we need the following lemmas.

Lemma 39. Let M be a projective module. Then M is ss-supplemented if and only if it is supplemented and $Rad(M) \subseteq Soc(M)$.

Proof. Suppose that M is projective supplemented module. Therefore we have $Rad(M) \ll M$ by [7, 42.5]. Then the proof is obvious from Theorem 20.

Lemma 40. Let R be a ring. Then every left R-module is ss-supplemented if and only if every left R-module is the sum of all strongly local submodules.

Proof. Assume that every left R-module M is ss-supplemented. Then, by [7, 43.9], R is left perfect. This implies that R is a left max ring. Applying Corollary 32, M is the sum of all strongly local submodules of M. The converse follows from Theorem 30.

Theorem 41. The following statements are equivalent for a ring R:

- (1) $_RR$ is ss-supplemented,
- (2) R is semiperfect and $Rad(R) \subseteq Soc(R)$,
- (3) R is semilocal and $Rad(R) \subseteq Soc(R)$,
- (4) Every projective left R-module is (amply) ss-supplemented,
- (5) Every left R-module is (amply) ss-supplemented,
- (6) Every left R-module is the sum of all strongly local submodules,
- (7) _RR is a finite sum of strongly local submodules,
- (8) Every maximal left ideal of R has an ss-supplement in R.

Proof. (1) \Longrightarrow (2) \Longrightarrow (3) By Corollary 21 and [7, 42.6].

(3) \Longrightarrow (4) Let M be a projective R-module. Then, by [7, 21.17 (2)], we can write $Rad(M) = Rad(R)M \subseteq Soc(_RR)M = Soc(M)$. From [7, 43.9] and Lemma 39, the proof is completed.

- $(4) \Longrightarrow (5)$ follows [7, 18.6] and Proposition 26.
- $(5) \Longrightarrow (6)$ By Lemma 40.
- $(6) \Longrightarrow (7)$ is obvious.
- $(7) \Longrightarrow (8)$ By Theorem 30.
- $(8) \Longrightarrow (1)$ By Corollary 31.

References

- [1] Alizade, R., Bilhan, G. and Smith, P.F., Modules whose maximal submodules have supplements, *Communications in Algebra*, 29(6) (2001) 2389-2405.
- [2] Büyükaşık, E., Mermut, E. and Özdemir, S., Rad-supplemented modules, *Rend. Sem. Mat. Univ. Padova* 124 (2010) 157-177.
- [3] Kasch, F., Modules and Rings, London New York, 1982.
- [4] Lomp, C., On semilocal modules and rings, Communications in Algebra 27(4) (1999) 1921-1935.
- [5] Mohamed, S.H., Müller, B.J., Continuous and Discrete Modules, London Math. Soc. LNS 147 Cambridge University, 1990.
- [6] Sharpe, D.W., Vamos, P., Injective Modules, Cambridge University Press, Cambridge, 1972.
- [7] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, 1991
- [8] Zhou, D. X., Zhang, X.R., Small-Essential Submodules and Morita Duality, Southeast Asian Bulletin of Mathematics 35 (2011) 1051-1062.
- [9] Zöschinger, H., Moduln die in jeder Erweiterung ein Komplement haben, Mathematica Scandinavica 35 (1974) 267-287.
- [10] Zöschinger, H., Komplementierte moduln über Dedekindringen, Journal of Algebra 29 (1974) 42-56.

 $Current\ address:$ Engin Kaynar: Amasya University, Vocational School of Technical Sciences, 05100 Amasya Turkey

 $E\text{-}mail\ address: \verb|engin_kaynar05@hotmail.com||$

ORCID Address: http://orcid.org/0000-0002-1955-1326

 $\label{lem:current} \textit{Current address} : \mbox{Hamza Qalışıcı: Ondokuz Mayıs University, Faculty of Education, Department of Mathematics, 55139, Kurupelit/Atakum, Samsun, Turkey}$

 $E ext{-}mail\ address: hcalisici@omu.edu.tr}$

ORCID Address: http://orcid.org/0000-0002-9897-9012

Current address: Ergül Türkmen: Amasya University, Faculty of Art and Science, Department

of Mathematics, 05100 Ipekkoy, Amasya, Turkey $E\text{-}mail\ address:}$ ergulturkmen@hotmail.com

ORCID Address: http://orcid.org/0000-0002-7082-1176