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Abstract
In this paper, we present new analogues of the Filbert and Lilbert matrices via products
of two k-tuples asymmetric entries consist of the Fibonacci and Lucas numbers. We shall
derive explicit formulæ for their LU -decompositions and inverses. To prove the claimed
results, we write all the identities to be proven in q-word and then use the celebrated
Zeilberger algorithm to prove required q-identities.
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1. Introduction
Let {Un} and {Vn} be the generalized Fibonacci and Lucas sequences, respectively,

whose the Binet forms are

Un = αn − βn

α − β
= αn−1 1 − qn

1 − q
and Vn = αn + βn = αn (1 + qn) ,

where q = β/α = −α−2, so that α = i/√
q. When α = 1+

√
5

2 (or equivalently q =
(1 −

√
5)/(1 +

√
5)), the sequences {Un, Vn} are reduced to the Fibonacci sequence {Fn}

and the Lucas sequence {Ln}.
Throughout this paper we shall use the q-Pochhammer symbol

(x; q)n = (1 − x) (1 − xq) ...
(
1 − xqn−1

)
.

In the literature, there are many combinatorial matrices constructed by terms of spe-
cial integer sequences or their functional analogues. For example, they are constructed via
the binomial coefficients, the Gaussian q-binomial coefficients or the well-known integer
sequences such as natural numbers, the Fibonacci and Lucas numbers. For these combi-
natorial matrices and their properties, we refer to the works [2–6, 14–17, 21, 22]. Now we
recall some well-known combinatorial matrices from the current literature:
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• Chu and Di Claudio [5] studied the matrix
[

(a)j+λi
(c)j+λi

]
0≤i,j≤n

, where a and c are

complex numbers, {λi}n
i=0 are integers and (x)n is the shifted factorial of order n.

They also presented some variants of the above matrix.
• For nonnegative integer g, Zhou and Zhaolin [21] studied the g-circulant matrices

whose elements consist of the Fibonacci and Lucas numbers, separately.
• Hilbert matrix H = [hij ] is defined with entries

hij = 1
i + j − 1

.

• As an analogue of the well known Hilbert matrix, Richardson [20] defined and
studied the Filbert matrix Hn =

[
h̃ij

]n
i,j=1

with entries

h̃ij = 1
Fi+j−1

,

where Fn is the nth Fibonacci number.
• The Filbert matrix has been extended by Berg [1] and Ismail [7].
• Also several generalizations and analogues of it have been investigated and studied.

For example, Kılıç and Prodinger [8] gave a generalization of the Filbert matrix
denoted by F with entries

fij = 1
Fi+j+r

,

where r ≥ −1 is an integer parameter.
• Kılıç and Prodinger [10] introduced two new variations of the Filbert matrix F

denoted by G and L with entries, respectively

gij =
Fλ(i+j)+r

Fλ(i+j)+s
and lij =

Lλ(i+j)+r

Lλ(i+j)+s
,

where s, r, and λ are integer parameters such that s ̸= r, s ≥ −1, and λ ≥ 1. This
was the first nontrivial example where the numerator of the entries is not equal to
zero.

• Kılıç and Prodinger [9] gave a further generalization of the generalized Filbert
matrix F by defining the matrix Q with entries

Qij = 1
Fi+j+rFi+j+r+1...Fi+j+r+k−1

,

where r ≥ −1 is an integer parameter and k ≥ 0 is an integer parameter.
• Some authors generalized and extended the concept in a series of papers [8–13,19]

to matrices with entries
1

Fλ(i+j)+rFλ(i+j+1)+r...Fλ(i+j+k−1)+r

and
1

Lλ(i+j)+rLλ(i+j+1)+r...Lλ(i+j+k−1)+r
,

where r ≥ −1 and λ, k ≥ 1 are integer parameters.
• Kılıç and Prodinger [11] went one step further, by allowing an asymmetric growth

of indices. They, however, confined themselves to k = 1; for this instance, the
inverse matrix also enjoys nice closed form entries, which is no longer true for
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k ≥ 2. To be more specific, they introduced four generalizations of the Filbert
matrix F, and defined the matrices T, M, H, and Z with entries by

tij = 1
Fλi+µj+r

, mij = Fλi+µj+r

Fλi+µj+s
, hij = 1

Lλi+µj+r
and zij = Lλi+µj+r

Lλi+µj+s
,

respectively, where s, r, λ, and µ are integer parameters such that s ̸= r, s, r ≥ −1,
and λ, µ ≥ 1. To prove their results, the authors could not use the q-Zeilberger
algorithm because the summand they needed, are not q-hypergeometric. So they
used the backward induction to prove their claims.

In these summarized works, the authors derived explicit formulæ for the LU -decompositions
for the matrices mentioned above. Also they derived explicit formulæ for their inverses.

In this paper, inspiring by the all works mentioned above, we shall present new analogues
of the Filbert and Lilbert matrices. We study two matrices A and B with entries

Aij = 1
(Fi+j+r+1Fi+j+r+2...Fi+j+r+k) · (Li−j+s+1Li−j+s+2...Li−j+s+k)

and
Bij = 1

(Li+j+r+1Li+j+r+2...Li+j+r+k) · (Li−j+s+1Li−j+s+2...Li−j+s+k)
,

where r, s, λ, and µ are integer parameters such that s ̸= r, r, s ≥ −1, and λ, µ ≥ 1. We
shall derive explicit formulæ for the LU -decompositions and their inverses.

Thus we denote q-forms of the matrices A and B by A and B, respectively. In that
case, they are

An,d = (1 − q)k (−1)k(n+r+s+1)+1 ik(k+s+r)q
1
2 k(k+r+s)+nk

× 1
k∏

t=1
[(1 − qn+d+r+t) (1 + qn−d+s+k)]

and

Bn,d = (−1)k(n+r+s)+1 ik(k+r+s+1)q
1
2 k(r+s+k+1)+kn

× 1
k∏

t=1
[(1 + qn+d+r+t) (1 + qn−d+s+k)]

,

respectively. After this, we will present all our results for the matrices A and B because
all our identities hold for a general q. Thus one can obtain the results related with the
matrices A and B by taking q =

(
1 −

√
5
)

/
(
1 +

√
5
)

.

We briefly clarify what will be done throughout this paper. We will derive explicit
formulæ for LU -decompositions and inverses of the matrices A and B. Here we only prove
some of the claimed results rather than all of them. We will use the celebrated q-Zeilberger
algorithm [19] to prove the claimed results. In detail, all the results related with the matrix
A will be listed in Section 2 without proof. All the results related with the matrix B will
be listed in Section 3 without proof. We also give Fibonacci-Lucas corollaries of our results
after each result by choosing a special value of q, q =

(
1 −

√
5
)

/
(
1 +

√
5
)

in Sections 2
and 3. Then, in Section 4.1, we will give the proofs related with the matrix A. For the
matrix A, we prove the claim about the LU -decompositions of the matrix A as well as the
claim about the matrix L and its inverse matrix L−1. In Section 4.2, for the matrix B, we
prove the claim about the LU -decompositions of the matrix B as well as the claim about
the matrix U and its inverse matrix U−1. While proving the claimed identities mentioned
just above, we use the q-Zeilberger algorithm.
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2. The main results
In this section, we will present all our results related to matrix A. We start with giving

the matrices L and U yielding from the LU -decomposition of the matrix A of the form
A = L.U in the following next two theorems.

Theorem 2.1. For 1 ≤ d ≤ n,

Ln,d = (−q)k(n−d) (q; q)n−1
(q; q)n−d (q; q)d−1

×

(
qd+r+2; q

)
d+k−1

(
−qs+1; q

)
d+k−1

(
−q2d+k+s+r+1; q

)
n−d

(qn+r+2; q)d+k−1 (−qn−d+s+1; q)d+k−1 (−qd+k+s+r+2; q)n−d

.

Fibonacci-Lucas corollary for k = 3, r = 4, and s = 2 :

Corollary 2.2. For 1 ≤ d ≤ n,

Ln,d =
(−1)n−d

(
n−1∏
t=1

Ft

)(
d+2∏
t=1

Ft+d+5

)(
d+2∏
t=1

Lt+2

)(
n−d∏
t=1

Lt+2d+9

)
(

n−d∏
t=1

Ft

)(
d−1∏
t=1

Ft

)(
d+2∏
t=1

Ft+n+5

)(
d+2∏
t=1

Lt+n−d+2

)(
n−d∏
t=1

Lt+d+10

) .

Theorem 2.3. For 1 ≤ d ≤ n,

Ud,n = (−1)k(d−1) ik(k−r−s)

× qd+k−1−n(d−1)+ k(k+r+s)
2 (1 − q)k (q; q)n−1

(q; q)n−d

×

(
qk; q

)
d−1

(
−qd+k+r+s+2; q

)
d−1

(
−qn+r−s+1; q

)
d−1

(−q−d−k−s+1; q)d−1 (qd+k+r+1; q)d−1 (qn+r+2; q)d+k−1 (−qs−n+2; q)d+k−1
.

Fibonacci-Lucas corollary for k = 3, r = 4, and s = 2 :

Corollary 2.4. For 1 ≤ d ≤ n,

Ud,n = (−1)−n(d−1)+ 3
2 53/2

×

(
d−1∏
t=1

Ft+2

)(
n−1∏
t=1

Ft

)(
d−1∏
t=1

Lt+d+10

)(
d−1∏
t=1

Lt+n+2

)
(

n−d∏
t=1

Ft

)(
d−1∏
t=1

Lt−d−5

)(
d−1∏
t=1

Ft+d+7

)(
d+2∏
t=1

Ft+n+5

)(
d+2∏
t=1

Lt−n+3

) .

Now we shall formulate determinant of the matrix A in the following theorem.

Theorem 2.5. For 1 ≤ n, d ≤ N,

detAN = (−1)kN ik(k−r−s)N q(k−1+n+ k(k+r+s)
2 )N

× (1 − q)kN
N∏

d=1
(−1)kd qd(1−n)

×

(
−qd+k+r+s+2; q

)
d−1

(
qk; q

)
d−1

(q; q)d−1

(
−qd+r−s+1; q

)
d−1

(−q−d−k−s+1; q)d−1 (qd+k+r+1; q)d−1 (qd+r+2; q)d+k−1 (−qs−d+2; q)d+k−1
.

Now we present the inverse matrices L−1 and U−1 in the following next two theorems.
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Theorem 2.6. For 1 ≤ d ≤ n,

L−1
n,d = (−1)(k−1)(d−n) q(n−d+1

2 )+(k−1)(n−d)

×
(
1 + q2d+k+r+s+1

) (q; q)n−1
(q; q)n−d (q; q)d−1

×

(
qd+r+2; q

)
n−d

(
−qd−n+s+2; q

)
n−d

(
−qn+k+s+r+2; q

)
n−1

(qn+d+k+r; q)n−d (−qd+k+s; q)n−d (−qd+k+s+r+2; q)n

.

Fibonacci-Lucas corollary for k = 3, r = 4, and s = 2 :

Corollary 2.7. For 1 ≤ d ≤ n,

L−1
n,d = (−1)(

d
2)+(n+1

2 )−dn L2(d+5)

×

(
n−1∏
t=1

Ft

)(
n−d∏
t=1

Ft+d+5

)(
n−d∏
t=1

Lt+d−n+3

)(
n−1∏
t=1

Lt+n+10

)
(

n−d∏
t=1

Ft

)(
d−1∏
t=1

Ft

)(
n−d∏
t=1

Ft+n+d+6

)(
n−d∏
t=1

Lt+d+4

)(
n∏

t=1
Lt+d+10

) .

Theorem 2.8. For 1 ≤ d ≤ n,

U−1
d,n = (−1)d+n(k−1) ik(k+r+s)q(d−1

2 )+(n
2)+s−k k+r+s

2

(
1 + q2d+r−s

)
(1 − q)k

×

(
qd+r+2; q

)
n+k−2

(
−qs+2−d; q

)
n+k−2

(
qn+k+r+1; q

)
n

(
−q−n−k−s+1; q

)
n

(qk; q)n−1 (q; q)n−d (q; q)d−1 (−qd+r−s+1; q)n (−qn+k+r+s+2; q)n−1
.

Fibonacci-Lucas corollary for k = 3, r = 4, and s = 2 :

Corollary 2.9. For 1 ≤ d ≤ n,

U−1
d,n = (−1)(

d
2)+(n+2

2 ) L2(d+1)5−3/2

×

(
n+1∏
t=1

Ft+d+5

)(
n+1∏
t=1

Lt−d+3

)(
n∏

t=1
Ft+n+7

)(
n∏

t=1
Lt−n−5

)
(

n−1∏
t=1

Ft+2

)(
n−d∏
t=1

Ft

)(
d−1∏
t=1

Ft

)(
n∏

t=1
Lt+d+2

)(
n−1∏
t=1

Lt+n+10

) .

Now let us consider the inverse matrix again. Since A−1 = U−1L−1 and by the definitions
of the matrices U−1 and L−1, we have the following result without proof.

Theorem 2.10. For 1 ≤ i, j ≤ n, we have(
(An)−1

)
i,j

= ik(k+r+s) (−1)jk−j+i

× q(j+1
2 )− 1

2 k(r+s+k)+s−jk− 1
2 (3i−1)

(
1 + q2j+k+r+s+1

) (
1 + q2i+r−s

)
(1 − q)k (q; q)i−1 (q; q)j−1

×
∑

max{i,j}≤t≤n

qt(t−j+k−1)

(
qi+r+2; q

)
t+k−2

(
−qs+2−i; q

)
t+k−2

(
qt+k+r+1; q

)
t

(qk; q)t−1 (−qi+r−s+1; q)t (−qt+k+r+s+2; q)t−1

×
(q; q)t−1

(
−q−t−k−s+1; q

)
t

(
qj+r+2; q

)
t−j

(
−qj−t+s+2; q

)
t−j

(
−qt+k+s+r+2; q

)
t−1

(q; q)t−i (q; q)t−j (qt+j+k+r; q)t−j (−qj+k+s; q)t−j (−qj+k+s+r+2; q)t

.
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The final formula given in the last theorem follows from some straightforward simplifica-
tions. Unfortunately, the sum cannot be evaluated in closed form as we saw.

3. The matrix B

Now we present all our results related to the matrix B. For convenience, we use the
same letters L and U, but with a different meaning. We present the matrices L and U
yielding from the LU -decomposition B = L.U in the following next two theorems:

Theorem 3.1. For 1 ≤ d ≤ n,

Ln,d = (−q)k(n−d)

(
qn−d+1; q

)
d−1

(q; q)d−1

×

(
−qd+r+2; q

)
d+k−1

(
−qs+1; q

)
d+k−1

(
qn+k+r+s+2; q

)
d−1

(−qn+r+2; q)d+k−1 (−qn−d+s+1; q)d+k−1 (qd+k+r+s+2; q)d−1
.

Fibonacci-Lucas corollary for k = 3, r = 4, and s = 2 :

Corollary 3.2. For 1 ≤ d ≤ n,

Ln,d = (−1)n−d

×

(
d−1∏
t=1

Ft+n−d

)(
d+2∏
t=1

Lt+s

)(
d+2∏
t=1

L−t+d+2

)(
d−1∏
t=1

Ft+n+10

)
(

d−1∏
t=1

Ft

)(
d+2∏
t=1

Lt+n+5

)(
d+2∏
t=1

Lt+n−d+2

)(
d−1∏
t=1

Ft+d+10

) .

Theorem 3.3. For 1 ≤ d ≤ n,

Ud,n = (−1)k(d−1) ik(k−r−s−1)q(n−1)(1−d)+k( r+s+2
2 )+(k+1

2 )

×
(
qn+r−s+1; q

)
d−1

(−qn+r+2; q)d+k−1 (−q−n+s+2; q)d+k−1

×

(
qk; q

)
d−1

(q; q)n−1

(
qd+k+r+s+2; q

)
d−1

(q; q)n−d (−qd+k+r+1; q)d−1 (−q−d−k−s+1; q)d−1
.

Fibonacci-Lucas corollary for k = 3, r = 4, and s = 2 :

Corollary 3.4. For 1 ≤ d ≤ n,

Ud,n = (−1)n(1−d)

×

(
d−1∏
t=1

Ft+2

)(
n−1∏
t=1

Ft

)(
d−1∏
t=1

Ft+n+2

)(
d−1∏
t=1

Ft+d+10

)
(

n−d∏
t=1

Ft

)(
d+2∏
t=1

Lt+n+5

)(
d−1∏
t=1

Lt+d+7

)(
d+2∏
t=1

Lt−n+3

)(
d−1∏
t=1

Lt−d−5

) .

We can give determinant of the matrix B since it is simply evaluated as product of the
main diagonal elements of the matrix U yielding from the LU -decomposition B = L.U in
the following theorem.
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Theorem 3.5. For 1 ≤ n, d ≤ N,

detBN

= (−1)kN ik(k−r−s−1)N q
(

n−1+k( r+s+2
2 )+(k+1

2 )
)

N
N∏

d=1
(−1)kd q−d(n−1)

×

(
qk; q

)
d−1

(q; q)d−1

(
qd+r−s+1; q

)
d−1

(
qd+k+r+s+2; q

)
d−1

(−qd+k+r+1; q)d−1 (−q−d−k−s+1; q)d−1 (−qd+r+2; q)d+k−1 (−q−d+s+2; q)d+k−1
.

Now we present the inverse matrices L−1 and U−1 in the following next two theorems.

Theorem 3.6. For 1 ≤ d ≤ n,

L−1
n,d = (−1)(k+1)(n−d) q(n−d+1

2 )+(k−1)(n−d)

×
(
1 − q2d+r+s+k+1

) (q; q)n−1
(q; q)n−d (q; q)d−1

×

(
−qd+r+2; q

)
n−d

(
−qd−n+s+2; q

)
n−d

(
qn+k+r+s+2; q

)
n−1

(−qn+d+k+r; q)n−d (−qd+k+s; q)n−d (qd+k+r+s+2; q)n

.

Fibonacci-Lucas corollary for k = 3, r = 4, and s = 2 :

Corollary 3.7. For 1 ≤ d ≤ n,

L−1
n,d = (−1)(

d
2)+(n+1

2 )−dn−d+1 L2(d+5)

×

(
n−1∏
t=1

Ft

)(
n−d∏
t=1

Lt+d+5

)(
n−d∏
t=1

Lt+d−n+3

)(
n−1∏
t=1

Ft+n+10

)
(

n−d∏
t=1

Ft

)(
d−1∏
t=1

Ft

)(
n−d∏
t=1

Lt+n+d+6

)(
n−d∏
t=1

Lt+d+4

)(
n∏

t=1
Ft+d+10

) .

Theorem 3.8. For 1 ≤ d ≤ n,

U−1
d,n = (−1)d+n(k−1) ik(k+r+s+1)q(d−1

2 )+(n
2)− k(k+r+s+1)

2 +s

×
(
1 − q2d+r−s

) 1
(q; q)n−d (q; q)d−1

×

(
−qd+r+2; q

)
n+k−2

(
−q−d+s+2; q

)
n+k−2

(
−qn+k+r+1; q

)
n

(
−q−n−k−s+1; q

)
n

(qk; q)n−1 (qd+r−s+1; q)n (qn+k+r+s+2; q)n−1
.

Fibonacci-Lucas corollary for k = 3, r = 4, and s = 2 :

Corollary 3.9. For 1 ≤ d ≤ n,

U−1
d,n = (−1)(

d
2)+(n

2)+1 F2(d+1)

×

(
n+1∏
t=1

Lt+d+5

)(
n+1∏
t=1

Lt−d+3

)(
n∏

t=1
Lt+n+7

)(
n∏

t=1
Lt−n−5

)
(

n−1∏
t=1

Ft+2

)(
n−d∏
t=1

Ft

)(
d−1∏
t=1

Ft

)(
n∏

t=1
Ft+d+2

)(
n−1∏
t=1

Ft+n+10

) .

Now we consider the inverse matrix. Since B−1 = U−1L−1 and by the definitions of the
matrices U−1 and L−1, we have the following result without proof.
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Theorem 3.10. For n > 0,(
(Bn)−1

)
i,j

= (−1)−j−jk+i ik(k+r+s+1)

× q(j+1
2 )−jk+s− 1

2 k(r+s+k)− 1
2 (3i+k−1)

(
1 − q2i+r−s

) (
1 − q2j+r+s+k+1

)
(q; q)i−1 (q; q)j−1

×
∑

t

qt(t+k−j−1)

(
−qi+r+2; q

)
t+k−2

(
−q−i+s+2; q

)
t+k−2

(
−qt+k+r+1; q

)
t

(qk; q)t−1 (q; q)t−i (qi+r−s+1; q)t (qt+k+r+s+2; q)t−1

×
(q; q)t−1

(
−qj+r+2; q

)
t−j

(
−qj−t+s+2; q

)
t−j

(
qt+k+r+s+2; q

)
t−1

(
−q−t−k−s+1; q

)
t

(q; q)t−j (−qt+j+k+r; q)t−j (−qj+k+s; q)t−j (qj+k+r+s+2; q)t

.

The final formula as given in the theorem just above follows from some straightforward
simplifications. Unfortunately, the sum again cannot be evaluated in closed form as we
saw.

4. Proofs
Here we shall only prove four claimed identities related with matrices A and B in the

following subsections separately. We use the q-Zeilberger algorithm for all the identities
will be proven, our experiments indicate that they are Gosper-summable. The entries in
our examples, qualify for the q-Zeilberger algorithm that we used in our earlier papers.
Nowadays, such identities are a routine verification using the q-Zeilberger algorithm, as
described in the book [18].

4.1. Proofs related with the matrix A

We shall present the proofs related to the matrix A. For LU -decomposition of A, we
have to prove that ∑

1≤t≤min{d,n}
Ld,tUt,n = Ad,n.

Thus, consider∑
1≤t≤min{d,n}

Ld,tUt,n

= (−1)k(d−1) ik(k−r−s)qk(d+1)+n+ k(k+r+s)
2 −1 (1 − q)k (q; q)d−1 (q; q)n−1

×
∑

1≤t≤min{d,n}
qt(1−n−k) 1

(q; q)n−t (q; q)d−t

×

(
qk; q

)
t−1

(
−q2t+k+s+r+1; q

)
d−t

(
−qt+k+r+s+2; q

)
t−1

(
−qn+r−s+1; q

)
t−1

(q; q)t−1 (−qt+k+s+r+2; q)d−t (−q−t−k−s+1; q)t−1 (qt+k+r+1; q)t−1

×
(
qt+r+2; q

)
t+k−1

(
−qs+1; q

)
t+k−1

(qd+r+2; q)t+k−1 (−qd−t+s+1; q)t+k−1 (qn+r+2; q)t+k−1 (−qs−n+2; q)t+k−1
.

Denote the last sum in the above equation by SUMn. The Mathematica version of the
q-Zeilberger algorithm produces the recursion

SUMn = (1 − qd+n+r)(1 + qd−n+k+s+1)
q(1 − qn−1)(1 − qd+n+k+r)(1 + qd−n+s+1)

SUMn−1.

Since
SUM1 = qs

(q; q)d−1(qd+r+2; q)k(−qd+s; q)k
,
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we obtain

SUMn = 1
qn−1−s(q; q)d−1(q2; q2)k(q; q)n−1

[
n + d + k + r

n + d + r

]−1

q

[
d − n + k + s

d − n + s

]−1

−q

,

as claimed.

Now we prove ∑
d≤t≤n

Ln,tL
−1
t,d = δn,d,

where δn,d is the Kronecker delta. By lower triangular matrices L and L−1, we need to
look at the entries indexed by (n, d):

∑
d≤t≤n

Ln,tL
−1
t,d = (−1)−d+dk+kn q(d+1

2 ) (1 + q2d+k+r+s+1
) (q; q)n−1

(q; q)d−1

×
∑

d≤t≤n

(−1)t
q(t

2)−dt
(
−qs+1; q

)
t+k−1

(
−q2t+k+s+r+1; q

)
n−t

(qn+r+2; q)t+k−1 (−qn−t+s+1; q)t+k−1 (−qt+k+s+r+2; q)n−t

×

(
qt+r+2; q

)
t+k−1

(
qd+r+2; q

)
t−d

(
−qd−t+s+2; q

)
t−d

(
−qt+k+s+r+2; q

)
t−1

(q; q)n−t (q; q)t−d (qt+d+k+r; q)t−d (−qd+k+s; q)t−d (−qd+k+s+r+2; q)t

.

For the sum in the last expression, that is,

∑
d≤t≤n

(−1)t
q(t

2)−dt
(
−qs+1; q

)
t+k−1

(
−q2t+k+s+r+1; q

)
n−t

(qn+r+2; q)t+k−1 (−qn−t+s+1; q)t+k−1 (−qt+k+s+r+2; q)n−t

×

(
qt+r+2; q

)
t+k−1

(
qd+r+2; q

)
t−d

(
−qd−t+s+2; q

)
t−d

(
−qt+k+s+r+2; q

)
t−1

(q; q)n−t (q; q)t−d (qt+d+k+r; q)t−d (−qd+k+s; q)t−d (−qd+k+s+r+2; q)t

.

the q-Zeilberger algorithm evaluates it as 0 provided that i ̸= j. If i = j, it obvious that
the sum is equal to 1. Thus ∑

d≤t≤n

Ln,tL
−1
t,d = δn,d,

as claimed.

Similarly, using the q-Zeilberger algorithm, one could prove the result∑
d≤t≤n

Ud,tU
−1
t,n = δd,n.

4.2. Proofs related with the matrix B

In this part we shall give the proofs related to the matrix B. For LU -decomposition of
B, we have to prove that ∑

1≤t≤min{d,n}
Ld,tUt,n = Bd,n.
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Thus, consider∑
1≤t≤min{d,n}

Ld,tUt,n

= (−1)k(d−1) ik(k−r−s−1)q(k+1
2 )+ 1

2 k(r+s+2n)+k+n−1

× (q; q)n−1
∑

1≤t≤min{d,n}
qt(1−k−n)

(
qd−t+1; q

)
t−1

(q; q)t−1 (q; q)n−t

×
(
−qt+r+2; q

)
t+k−1

(
−qs+1; q

)
t+k−1

(−qd+r+2; q)t+k−1 (−qd−t+s+1; q)t+k−1 (qt+k+r+s+2; q)t−1

×

(
qk; q

)
t−1

(
qn+r−s+1; q

)
t−1

(
qt+k+r+s+2; q

)
t−1

(
qd+k+r+s+2; q

)
t−1

(−qt+k+r+1; q)t−1 (−qn+r+2; q)t+k−1 (−q−n+s+2; q)t+k−1 (−q−t−k−s+1; q)t−1
.

Denote the last sum in the above equation by SUMn. The algorithm produces the recursion

SUMn = q−1(1 + qd+n+r)(1 + qd−n+k+s+1)
(1 − qn−1)(1 + qd+n+k+r)(1 + qd−n+s+1)

SUMn−1.

Since
SUM1 = qs

(−qd+k+r+1; q−1)k(−qd+s; q)k
,

we obtain

SUMn = qs−n+1

(−q; q)k(−q; q)k(q; q)n−1

[
n + d + k + r

n + d + r

]−1

−q

[
d − n + k + s

d − n + s

]−1

−q

,

as claimed.

We continue with proving ∑
d≤t≤n

Ud,tU
−1
t,n = δn,d,

where δn,d is the Kronecker delta. By the lower triangular matrices U and U−1, we need
to look at the entries indexed by (n, d):∑

d≤t≤n

Ud,tU
−1
t,n = (−1)−n+k(d+n) q(n

2)+d+k+s

×

(
qk; q

)
d−1

(
−qn+k+r+1; q

)
n

(
−q−n−k−s+1; q

)
n

(
qd+k+r+s+2; q

)
d−1

(qk; q)n−1 (−q−d−k−s+1; q)d−1 (qn+k+r+s+2; q)n−1 (−qd+k+r+1; q)d−1

×
∑

d≤t≤n

(−1)t q(t
2)−dt

(
1 − q2t+r−s

)
(q; q)t−d (q; q)n−t

×
(
qt+r−s+1; q

)
d−1

(
−qt+r+2; q

)
n+k−2

(
−q−t+s+2; q

)
n+k−2

(−qt+r+2; q)d+k−1 (−q−t+s+2; q)d+k−1 (qt+r−s+1; q)n

.

For the sum in the last expression, that is,∑
d≤t≤n

(−1)t q(t
2)−dt

(
1 − q2t+r−s

)
(q; q)t−d (q; q)n−t

×
(
qt+r−s+1; q

)
d−1

(
−qt+r+2; q

)
n+k−2

(
−q−t+s+2; q

)
n+k−2

(−qt+r+2; q)d+k−1 (−q−t+s+2; q)d+k−1 (qt+r−s+1; q)n
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the q-Zeilberger algorithm evaluates it as 0 for i ̸= j. If i = j, it is obvious that the sum
is equal to 1. Thus ∑

d≤t≤n

Ud,tU
−1
t,n = δd,n,

as claimed. Similarly, using the q-Zeilberger algorithm, we have∑
d≤t≤n

Ln,tL
−1
t,d = δn,d.
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