JOURNALO: SCIENCE

SAKARYA UNIVERSITY

Sakarya University Journal of Science

ISSN 1301-4048 | e-ISSN 2147-835X | Period Bimonthly | Founded: 1997 | Publisher Sakarya University | http://www.saujs.sakarya.edu.tr/

Title: On some Zweier convergent vector valued multiplier spaces

Authors: Ramazan Kama
Recieved: 2018-12-06 00:00:00
Accepted: 2018-12-31 00:00:00
Article Type: Research Article
Volume: 23
Issue: 4
Month: August
Year: 2019
Pages: 541-548

How to cite
Ramazan Kama; (2019), On some Zweier convergent vector valued multiplier spaces.
Sakarya University Journal of Science, 23(4), 541-548, DOI:
10.16984/saufenbilder. 492788

Access link
http://www.saujs.sakarya.edu.tr/issue/43328/492788

On Zweier convergent vector valued multiplier spaces

Ramazan Kama* ${ }^{*}$

Abstract

In this paper, we introduce the Zweier convergent vector valued multiplier spaces $M_{Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right)$ and $M_{w Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right)$. We study some topological and algebraic properties on these spaces. Furthermore, we study some inclusion relations concerning these spaces.

Keywords: vector valued multiplier space, Zweier matrix, summing operator, operator valued series.

1. INTRODUCTION

Let \mathbb{N} and \mathbb{R} be the sets of all positive integers and real numbers, respectively. We shall denote the space of all real valued sequences by

$$
w=\left\{x=\left(x_{i}\right): x_{i} \in \mathbb{R}\right\} .
$$

Any vector subspace of w is called as a sequence space. Let l_{∞}, c and c_{0} denote the spaces of all bounded, convergent and null sequences $x=\left(x_{i}\right)$ with real terms, respectively, normed by $\|x\|_{\infty}=$ $\sup _{i \in \mathbb{N}}\left|x_{i}\right|$.

A sequence space X with linear topology is called a K-space provided each of the maps $p_{i}: X \rightarrow \mathbb{R}$ defined by $p_{i}(x)=x_{i}$ is continuous for all $i \in \mathbb{N}$. If $x \in X$, then $e^{i} \otimes x$ denote the sequence with x
in the $i^{\text {th }}$ coordinate and zero in the other coordinates. If $\mathfrak{J} \subset \mathbb{N}, \chi_{\mathfrak{J}}$ denote the characteristic function of \mathfrak{J} and $x=\left(x_{i}\right)$ is any sequence, $\chi_{\Im} x$ denote the coordinatewise product of $\chi_{\mathfrak{J}}$ and x. A sequence space X is monoton if $\chi_{\mathfrak{S}} x \in X$ for every $\mathfrak{J} \subset \mathbb{N}$ and $x \in X$.

Let X and Y be sequence spaces and $A=\left(a_{n i}\right)$ be an infinite matrix of real numbers $a_{n i}$, where $n, i \in \mathbb{N}$. Then, we say that A defines a matrix mapping from X to Y. If for every sequence $x=$ $\left(x_{i}\right) \in X$ the sequence $A x=\left((A x)_{n}\right)$, the $A-$ transform of $x \in X$ in Y, where $(A x)_{n}=\sum_{k} a_{n i} x_{i}$ for each $n \in \mathbb{N}$. The matrix domain X_{A} of an infinite matrix A in a sequence space X is defined by

$$
X_{A}=\left\{x=\left(x_{i}\right) \in w: A x \in X\right\}
$$

[^0]which is a sequence space $[4,6,11]$.
Şengönül [15] defined the sequence $y=\left(y_{k}\right)$ which is frequently used as the $Z^{\alpha}-$ transformation of the sequence $x=\left(x_{k}\right)$ i.e.
$y_{k}=\alpha x_{k}+(1-\alpha) x_{k-1}$,
where $x_{-1}=0,1<k<\infty$ and Z^{α} denotes the matrix $Z^{\alpha}=\left(z_{i j}\right)$ defined by

$\left(z_{i j}\right)=\left\{\begin{aligned} \alpha, & \text { if } i=j, \\ 1-\alpha, & \text { if } i-1=j, \\ 0, & \text { otherwise } .\end{aligned}\right.$
Following Başar and Altay [5], Şengönül [15] introduced the Zweier sequence spaces Z and Z_{0} as follows:
$Z=\left\{x=\left(x_{k}\right) \in w: Z_{p} x \in c\right\}$,
$Z_{0}=\left\{x=\left(x_{k}\right) \in w: Z_{p} x \in c_{0}\right\}$.
For details on Zweier sequence spaces we also refer to [8-10].

Let X, Y be normed spaces, $L(X, Y)$ be also the space of continuous linear operators from X into Y and $\sum_{i} T_{i}$ be a series in $L(X, Y)$. λ be a vector space of X-valued sequences which contains $c_{00}(X)$, the space of all sequences which are eventually 0 . By $l_{\infty}(X)$ and $c_{0}(X)$, we denote the X - valued sequence spaces of bounded and convergence to zero, respectively. The series $\sum_{i} T_{i}$ is λ - multiplier convergent if the series $\sum_{i} T_{i} x_{i}$ converges in Y for every sequence $x=$ $\left(x_{i}\right) \in \lambda$. The series $\sum_{i} T_{i}$ is λ - multiplier Cauchy if the series $\sum_{i} T_{i} x_{i}$ is Cauchy in Y for every sequence $x=\left(x_{i}\right) \in \lambda$. For more information about vector valued multiplier spaces and multiplier convergent series, see $[2,7,8,13]$.

Let $\sum_{i} T_{i}$ be a series in $L(X, Y)$. Then, we will define the spaces

$$
\begin{aligned}
M_{Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right) & =\left\{x=\left(x_{i}\right)\right. \\
& \left.\in l_{\infty}(X): Z-\sum_{i} T_{i} x_{i} \text { exists }\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
M_{w Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right) & =\left\{x=\left(x_{i}\right)\right. \\
& \left.\in l_{\infty}(X): w Z-\sum_{i} T_{i} x_{i} \text { exists }\right\}
\end{aligned}
$$

endowed sup norm, where

$$
\begin{aligned}
Z-\sum_{i} T_{i} x_{i}= & \lim _{n \rightarrow \infty}(1-\alpha) \sum_{i=1}^{n-1} T_{i} x_{i}^{n} \\
& +\alpha \sum_{i=1}^{n} T_{i} x_{i}^{n}
\end{aligned}
$$

and

$$
\begin{aligned}
w Z-\sum_{i} T_{i} x_{i} & =\lim _{n \rightarrow \infty}(1-\alpha) \sum_{i=1}^{n-1} f\left(T_{i} x_{i}^{n}\right) \\
& +\alpha \sum_{i=1}^{n} f\left(T_{i} x_{i}^{n}\right)
\end{aligned}
$$

$f \in Y^{*}$ (dual of Y). Notice that $M_{Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right) \subset$ $M_{w Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right) \subset l_{\infty}(X)$.

In [1, 12], authors introduced some subspaces of l_{∞} by means of multiplier convergent series and studied some properties of this spaces. Also, in [3, 14], the above spaces studied in the case of some convergence.

In this paper, we will show that the spaces $M_{Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right)$ and $M_{w Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right)$ are Banach spaces by means of $c_{0}(X)$ - multiplier convergent series. Also, we will give some characterizations of $l_{\infty}(X)$ and $c_{0}(X)-$ multiplier convergent series by using summing operators related to the series $\sum_{i} T_{i}$.

2. THE ZWEIER SUMMABILITY SPACE

Before starting this section, we give the following propostion will be used for establishing some results of this study:

Proposition 2.1. $\sum_{i} T_{i} \quad c_{0}(X)-$ multiplier convergent series if and only if the set

$$
\begin{gather*}
E=\left\{\sum_{i}^{n} T_{i} x_{i}:\left\|x_{i}\right\| \leq 1, n\right. \\
\in \mathbb{N}\} \tag{1}
\end{gather*}
$$

is bounded [14].
The following theorem gives the completeness of the space $M_{Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right)$.

Theorem 2.2. Let X and Y are normed spaces and $\sum_{i} T_{i}$ is a series in $L(X, Y)$. If
(i) X and Y are Banach spaces,
(ii) The series $\sum_{i} T_{i} \quad c_{0}(X)-$ multiplier convergent,
then $M_{Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right)$ is a Banach space.
Proof. Since the series $\sum_{i} T_{i}$ is $c_{0}(X)$-multiplier convergent, by Proposition 2.1, there exists $\mathrm{M}>$ 0 such that
$M=\sup \left\{\left\|\sum_{i}^{n} T_{i} x_{i}\right\|:\left\|x_{i}\right\| \leq 1, n \in \mathbb{N}\right\}$.
We suppose that $\left(x^{m}\right)$ be a Cauchy sequence in $M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$. Since $M_{Z}^{\infty}\left(\sum_{i} T_{i}\right) \subset l_{\infty}(X)$ and $l_{\infty}(X)$ is a Banach space (since X is a Banach space), there exists $x=\left(x_{i}^{0}\right) \in l_{\infty}(X)$ such that $\lim _{m} x^{m}=x^{0}$. We will show that $x^{0} \in M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$.

We take $\varepsilon>0$. Then, there exists $m_{0} \in \mathbb{N}$ such that
$\left\|x^{m}-x^{0}\right\|<\frac{\varepsilon}{3 M}$
for $m \geq m_{0}$. Since $\frac{3 M}{\varepsilon}\left\|x^{m}-x^{0}\right\|<1$,

$$
\begin{aligned}
\frac{3 M}{\varepsilon} \|(1-\alpha) & \sum_{i=1}^{n-1} T_{i}\left(x_{i}^{m}-x_{i}^{0}\right) \\
& +\alpha \sum_{i=1}^{n} T_{i}\left(x_{i}^{m}-x_{i}^{0}\right) \| \leq M
\end{aligned}
$$

and so

$$
\begin{align*}
& \|(1-\alpha) \sum_{i=1}^{n-1} T_{i}\left(x_{i}^{m}-x_{i}^{0}\right) \\
& +\alpha \sum_{i=1}^{n} T_{i}\left(x_{i}^{m}-x_{i}^{0}\right) \| \\
& <\frac{\varepsilon}{3} \tag{2}
\end{align*}
$$

for $m \geq m_{0}$ and $n \in \mathbb{N}$. On the other hand, since $\left(x^{m}\right)$ is a Cauchy sequence in $M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$ there exists sequence $\left(y_{m}\right) \subset Y$ such that

$$
\begin{gather*}
\left\|(1-\alpha) \sum_{i=1}^{n-1} T_{i} x_{i}^{m}+\alpha \sum_{i=1}^{n} T_{i} x_{i}^{m}-y_{m}\right\| \\
<\frac{\varepsilon}{3} \tag{3}
\end{gather*}
$$

for $n \geq n_{0}$. If we take $p>q \geq m_{0}$, from (2) and (3), then we have $\left\|y_{p}-y_{q}\right\|<\varepsilon$. Hence, $\left(y_{m}\right)$ is a Cauchy sequence. Let $\lim _{m} y_{m}=y_{0}$ and suppose that $\left\|y_{m}-y_{0}\right\|<\frac{\varepsilon}{3}$. Consequently,

$$
\begin{aligned}
& \left\|(1-\alpha) \sum_{i=1}^{n-1} T_{i} x_{i}^{0}+\alpha \sum_{i=1}^{n} T_{i} x_{i}^{0}-y_{0}\right\| \\
& \leq \|(1-\alpha) \sum_{i=1}^{n-1} T_{i}\left(x_{i}^{m}-x_{i}^{0}\right) \\
& \quad+\alpha \sum_{i=1}^{n} T_{i}\left(x_{i}^{m}-x_{i}^{0}\right) \|
\end{aligned}
$$

$$
\begin{array}{r}
+\left\|(1-\alpha) \sum_{i=1}^{n-1} T_{i} x_{i}^{m}+\alpha \sum_{i=1}^{n} T_{i} x_{i}^{m}-y_{m}\right\| \\
+\left\|y_{m}-y_{0}\right\|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon
\end{array}
$$

for $n \geq n_{0}$. This means that $x^{0} \in M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$.
In the next theorem we show that the converse of above theorem is hold. But, it does not need to be the spaces X and Y are complete.

Theorem 2.3. If $M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$ is a Banach space, then $\sum_{i} T_{i} c_{0}(X)$ - multiplier convergent series.

Proof. We consider the sequence $x=\left(x_{i}\right) \in$ $c_{0}(X)$. From the closedness of $M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$ and
$c_{00}(X) \subset M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$, the inclusion $c_{0}(X) \subset$ $M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$ is hold.

Then, the series $\sum_{i} T_{i} x_{i}$ is subseries Zweier convergent beause of $c_{0}(X)$ is a monoton space. So, $\sum_{i} T_{i} x_{i}$ is weakly subseries Zweier convergent series. Using Orlicz-Pettis theorem ([1, Theorem 4.1]), we obtain that the series $\sum_{i} T_{i} x_{i}$ is subseries norm convergent, and hence $\sum_{i} T_{i}$ is $c_{0}(X)$ - multiplier convergent.

Remark 2.4. (1) In Theorem 2.2, if Y is not a Banach space, then there exists a sequence $y=$ $\left(y_{i}\right)$ in Y and $F \in Y^{* *} \backslash Y$ such that
$\left\|y_{i}\right\|<\frac{1}{3^{i} 3^{i}}$ and $\sum_{i} y_{i}=F$
for every $i \in \mathbb{N}$. Also, note that $Z-\sum_{i} y_{i}=F$. We take $x_{0} \in X$ with $\left\|x_{0}\right\|=1$. By Hahn-Banach theorem, we choose $x_{0}^{*} \in X^{*}$ such that $x_{0}^{*}\left(x_{0}\right)=$ $\left\|x_{0}\right\|$. We denote sequence $T_{i} \in L(X, Y)$ by $T_{i} x=x_{0}^{*}(x) 3^{i} y_{i}$ for each $i \in \mathbb{N}$. It is obtain that $\quad \sum_{i} T_{i}$ is $c_{0}(X)-$ multiplier Cauchy. Consider the sequence $x=\left(x_{0} / 3^{i}\right) \in c_{0}(X)$. Then $x^{n}=\sum_{i=1}^{n} e^{i} \otimes \mathrm{x}_{0} / 3^{i} \in M_{Z}^{\infty}\left(\sum_{i} T_{i}\right) \quad$ for every $n \in \mathbb{N}$ and $x^{n} \rightarrow x_{0} / 3^{i}$, but since

$$
\begin{aligned}
Z-\sum_{i} T_{i} x_{i}= & Z-\sum_{i} \frac{1}{3^{i}} x_{0}^{*}\left(x_{0}\right) 3^{i} y_{i} \\
& =Z-\sum_{i} y_{i}=F,
\end{aligned}
$$

$M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$ is not a Banach space.
(2) It is well know that if $\lim _{i} x_{i}=x_{0}$, then $Z-$ $\lim _{i} x_{i}=x_{0}$, and also $\sum_{i} x_{i}=x_{0}$, then $Z-$ $\sum_{i}^{i} x_{i}=x_{0}$. Therefore, if

$$
\begin{aligned}
M^{\infty}\left(\sum_{i} T_{i}\right)= & \left\{x=\left(x_{i}\right)\right. \\
& \left.\in l_{\infty}(X): \sum_{i} T_{i} x_{i} \text { exists }\right\}
\end{aligned}
$$

then we obtain the inclusion $M^{\infty}\left(\sum_{i} T_{i}\right) \subset$ $M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$.
(3) Let X and Y be normed spaces. We denote the summing operator associate with the series $\sum_{i} T_{i}$

$$
S: M_{Z}^{\infty}\left(\sum_{i} T_{i}\right) \rightarrow Y, \quad S(x)=Z-\sum_{i} T_{i} x_{i}
$$

Then, the summing operator S is continuous if and only if the series $\sum_{i} T_{i}$ is $c_{0}(X)$ - multiplier Cauchy. Let us suppose that S is continuous. Since $c_{00}(X) \subset M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$, and if $x=\left(x_{i}\right) \in$ $c_{00}(X)$ with $\|x\| \leq 1$ such that $x_{i}=0$ for all $i>k$, we have that
$\left\|S_{1} x_{1}+\cdots+S_{k} x_{k}\right\|=\|S x\| \leq\|S\|$.
Therefore
$\sup _{k}\left\{\left\|\sum_{i=1}^{k} T_{i} x_{i}\right\|:\left\|x_{i}\right\| \leq 1, k \in \mathbb{N}\right\} \leq\|S\|$
and hence, the series $\sum_{i} T_{i}$ is $c_{0}(X)$ - multiplier Cauchy by Proposition 2.1.

Now, suppose that $\sum_{i} T_{i}$ is $c_{0}(X)$ - multiplier Cauchy. Then, by Proposition 2.1, the set $E=$ $\left\{\left\|\sum_{i=1}^{k} T_{i} x_{i}\right\|:\left\|x_{i}\right\| \leq 1, k \in \mathbb{N}\right\}$ is bounded. We take $\|e\| \leq K$ for every $e \in E$. Let $x=\left(x_{i}\right) \in$ $M_{Z}^{\infty}\left(\sum_{i} T_{\mathrm{j}}\right)$ with $\|x\| \leq 1$. Thus $Z-\sum_{i=1}^{k} T_{i} x_{i}$ exists, and hence
$\left\|S_{k}(x)\right\|=\left\|Z-\sum_{i=1}^{k} T_{i} x_{i}\right\| \leq K$
for $k \in \mathbb{N}$. This means that S is continuous.
(4) We suppose that Y is a Banach space. Then, we will show that the summing operator S is compact if and only if the series $\sum_{i} T_{i}$ is $l_{\infty}(X)-$ multiplier convergent. Indeed, let S be compact and $x=\left(x_{i}\right) \in l_{\infty}(X)$. If we define the following set that is bounded on the space $M_{Z}^{\infty}\left(\sum_{i} T_{\mathrm{i}}\right)$
$M=\left\{\sum_{i \in \mathfrak{J}} e^{i} \otimes x_{i}: \mathfrak{J}\right.$ is finite, $\left.\left\|x_{i}\right\| \leq 1\right\}$,
then $S(M)=Z-\sum_{i \in \mathfrak{J}} T_{i} x_{i}: \mathfrak{J}$ isfinite, $\left\|x_{i}\right\| \leq 1$ is relatively compact. Hence, the series $\sum_{i} T_{i} x_{i}$ is subseries norm Zweier summability ([13, Theorem 2.48]), and so the series $\sum_{i} T_{i} x_{i}$ is
subseries norm convergent by Orlicz-Pettis theorem. That is $\sum_{i} T_{i}$ is $l_{\infty}(X)$ - multiplier convergent series.

Conversely, let $\sum_{i} T_{i}$ is $l_{\infty}(X)$ - multiplier convergent series, then $Z-\sum_{i} T_{i} x_{i}$ is uniformly convergent series for $\left\|x_{i}\right\| \leq 1$ ([13, Corollary 11.11]). If we define the operators $S_{n}: M_{Z}^{\infty}\left(\sum_{i} T_{\mathrm{i}}\right) \rightarrow Y$ by $S_{n}(x)=Z-\sum_{i=1}^{n} T_{i} x_{i}$ for $n \in \mathbb{N}$, then

$$
\begin{gathered}
\left\|S_{n}-S\right\|=\left\|Z-\sum_{i=1}^{n} T_{i} x_{i}-Z-\sum_{i=1}^{\infty} T_{i} x_{i}\right\| \\
=\left\|Z-\sum_{i=n+1}^{\infty} T_{i} x_{i}\right\| \rightarrow 0
\end{gathered}
$$

for $\left\|x_{i}\right\| \leq 1$, as $n \rightarrow \infty$. Therefore, S is compact.
By Theorem 2.2, Theorem 2.3 and Remark 2.4, we can obtain the following corollary:

Corollary 2.5. If X and Y are Banach spaces and $\sum_{i} T_{i}$ is a series in $L(X, Y)$, then the following statements are equivalent:
(i) $\sum_{i} T_{i} c_{0}(X)$ - multiplier convergent series.
(ii) $M^{\infty} \sum_{i} T_{i}$ is a Banach space.
(iii) $c_{0}(X) \subseteq M^{\infty} \sum_{i} T_{i}$.
(iv) $M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$ is a Banach space.
(v) $c_{0}(X) \subseteq M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$.

3. THE WEAK ZWEIER SUMMABILITY SPACE

In this section, we will extend that to the space $M_{w Z}^{\infty}\left(\sum_{i} T_{i}\right)$ some of the conclusions obtained in the preceding section for the space $M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$. We begin this section by the following theorem.

Theorem 3.1. If X and Y are Banach spaces and the series $\sum_{i} T_{i} c_{0}(X)$-multiplier convergent, then $M_{w Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right)$ is a Banach space.

Proof. Let $\left(x^{m}\right) \subset M_{w Z}^{\infty}\left(\sum_{i} T_{i} x_{i}\right)$ be a Cauchy sequence. Then, $\lim _{m} x^{m}=x^{0}$ in $l_{\infty}(X)$. We will prove that $x^{0} \in M_{w Z}^{\infty}\left(\sum_{i} T_{i}\right)$.

If the proof of Theorem 2.2 is followed, then there exists $m_{0} \in \mathbb{N}$ such that

$$
\begin{align*}
& \|(1-\alpha) \sum_{i=1}^{n-1} T_{i}\left(x_{i}^{m}-x_{i}^{0}\right) \\
& +\alpha \sum_{i=1}^{n} T_{i}\left(x_{i}^{m}-x_{i}^{0}\right) \| \\
& <\frac{\varepsilon}{3} \tag{4}
\end{align*}
$$

for $m \geq m_{0}$ and $n \in \mathbb{N}$. If $p>q \geq m_{0}$ are fixed, then a functional $f \in S_{Y^{*}}$ (unit sphere in Y^{*}) can be found such that $\left\|y_{p}-y_{q}\right\|=\left|f\left(y_{p}-y_{q}\right)\right|$. Since $\left(x^{m}\right)$ is a Cauchy sequence in $M_{Z}^{\infty}\left(\sum_{i} T_{i}\right)$, there exists sequence $\left(y_{m}\right) \subset Y$ such that

$$
\begin{align*}
& \|(1-\alpha) \sum_{i=1}^{n-1} f\left(T_{i} x_{i}^{m}\right) \\
& +\alpha \sum_{i=1}^{n} f\left(T_{i} x_{i}^{m}\right)-f\left(y_{m}\right) \| \\
& <\frac{\varepsilon}{3} \tag{5}
\end{align*}
$$

for $n \geq n_{0}$. From (4) and (5), we have $\left\|y_{p}-y_{q}\right\|<\varepsilon$. Thus, $\left(y_{m}\right)$ is a Cauchy sequence. Since Y is a Banach space, there exists $y_{0} \in Y$ such that $\left\|y_{m}-y_{0}\right\|<\frac{\varepsilon}{3}$. Finally, we obtain that the following inequalities,

$$
\begin{aligned}
& \left|(1-\alpha) \sum_{i=1}^{n-1} f\left(T_{i} x_{i}^{0}\right)+\alpha \sum_{i=1}^{n} f\left(T_{i} x_{i}^{0}\right)-f\left(y_{0}\right)\right| \\
& \leq \mid(1-\alpha) \sum_{i=1}^{n-1} f\left(T_{i}\left(x_{i}^{m}-x_{i}^{0}\right)\right) \\
& \quad+\alpha \sum_{i=1}^{n} f\left(T_{i}\left(x_{i}^{m}-x_{i}^{0}\right)\right) \mid
\end{aligned}
$$

$$
\begin{array}{rl}
+\mid(1-\alpha) \sum_{i=1}^{n-1} & f\left(T_{i} x_{i}^{m}\right) \\
& +\alpha \sum_{i=1}^{n} f\left(T_{i} x_{i}^{m}\right)-f\left(y_{m}\right) \mid \\
\quad+\left|f\left(y_{m}\right)-f\left(y_{0}\right)\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3} \\
\quad & =\varepsilon
\end{array}
$$

for $n \geq n_{0}$. In the other words, $w Z-\sum_{i=1}^{n} T_{i} x_{i}^{0}=$ y_{0}, and so $x^{0} \in M_{w Z}^{\infty}\left(\sum_{i} T_{i}\right)$.

Theorem 3.2. If $M_{w Z}^{\infty}\left(\sum_{i} T_{i}\right)$ is a Banach space, then $\sum_{i} T_{i} c_{0}(X)-$ multiplier convergent series.

Proof. As in the proof of Theorem 2.3, if $M_{w Z}^{\infty}\left(\sum_{i} T_{i}\right)$ is a Banach space, then $c_{0}(X) \subset$ $M_{w Z}^{\infty}\left(\sum_{i} T_{i}\right)$. From the monotonity of $c_{0}(X)$, the series $\sum_{i} T_{i} x_{i}$ is weakly subseries Zweier convergent and hence $\sum_{i} T_{i}$ is $c_{0}(X)$ - multiplier convergent.

Remark 3.3. (1) In Theorem 3.1, if Y is not a Banach space and consider the sequence $x=$ $\left(x_{0} / 3^{i}\right) \in c_{0}(X)$, following the Remark 2.4 (1), then we obtain that $w Z-\sum_{i} T_{i} x_{i}=F$ for $F \in$ $Y^{* *}$. Thus, $x=\left(x_{0} / 3^{i}\right) \notin M_{w Z}^{\infty}\left(\sum_{i} T_{i}\right)$. That is, $M_{w Z}^{\infty}\left(\sum_{i} T_{i}\right)$ is not a Banach space.
(2) Since $w-\sum_{i} x_{i}=x_{0}$ implies $w Z-\sum_{i} x_{i}=$ x_{0}, therefore, if

$$
\begin{aligned}
M_{w}^{\infty}\left(\sum_{i} T_{i}\right)= & \left\{x=\left(x_{i}\right) \in l_{\infty}(X)\right. \\
& \left.: w-\sum_{i} T_{i} x_{i} \text { exists }\right\},
\end{aligned}
$$

then $M_{w}^{\infty}\left(\sum_{i} T_{i}\right) \subset M_{w Z}^{\infty}\left(\sum_{i} T_{i}\right)$.
(3) Let X and Y be normed spaces. We can also define the summing operator associate with the series $\sum_{i} T_{i}$

$$
\begin{aligned}
& S: M_{w Z}^{\infty}\left(\sum_{i} T_{\mathrm{i}}\right) \rightarrow Y \\
& \\
& \qquad \quad S(x)=w Z-\sum_{i} T_{\mathrm{i}} x_{i} .
\end{aligned}
$$

As we did Remark 2.4 (3), one can see that the summing operator S is continuous if and only if the series $\sum_{i} T_{i}$ is $c_{0}(X)$ - multiplier Cauchy.
(4) Let Y be a Banach space. If S is compact, from Remark 2.4 (4), then the set $S(M)$ is weakly relatively compact, and hence $\sum_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}$ is $l_{\infty}(X)-$ multiplier convergent series. On the other hand, let us suppose that Y is complete and the series $\sum_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}$ is $l_{\infty}(X)-$ multiplier convergent. Then, $\mathrm{wZ}-\sum_{\mathrm{i}} \mathrm{T}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$ is uniformly convergent for $\left\|\mathrm{x}_{\mathrm{i}}\right\| \leq$ 1 ([13, Corollary 11.11]). Therefore, we have that

$$
\begin{gathered}
\left\|S_{n}-S\right\|=\left\|w Z-\sum_{i=1}^{n} T_{i} x_{i}-w Z-\sum_{i=1}^{\infty} T_{i} x_{i}\right\| \\
=\left\|w Z-\sum_{i=n+1}^{\infty} T_{i} x_{i}\right\| \rightarrow 0
\end{gathered}
$$

for $\left\|\mathrm{x}_{\mathrm{i}}\right\| \leq 1$, as $\mathrm{n} \rightarrow \infty$, where the operators $S_{n}: M_{w Z}^{\infty}\left(\sum_{i} T_{\mathrm{i}}\right) \rightarrow Y$ is defined by $S_{n}(x)=$ $w Z-\sum_{i=1}^{n} T_{i} x_{i}$ for $n \in \mathbb{N}$. This implies that S is compact.

By the previous theorems and remark above, we can give the following corollaries:

Corollary 3.4. If X and Y are Banach spaces and $\sum_{i} T_{i}$ is a series in $L(X, Y)$, then the following conditions are equivalent:
(i) $\sum_{i} T_{i} c_{0}(X)$ - multiplier convergent series.
(ii) $M_{w}^{\infty} \sum_{i} T_{i}$ is a Banach space.
(iii) $c_{0}(X) \subseteq M_{w}^{\infty} \sum_{i} T_{i}$.
(iv) $M_{w Z}^{\infty}\left(\sum_{i} T_{i}\right)$ is a Banach space.
(v) $c_{0}(X) \subseteq M_{w Z}^{\infty} \sum_{i} T_{i}$.

Corollary 3.5. If Y is Banach space, then the following are equivalent:
(i) S is compact.
(ii) S is a weakly compact.
(iii) $\sum_{i} T_{i}$ is $l_{\infty}(X)-$ multiplier convergent series.

Finally, we will give a sufficient condition for the equivalence of both spaces, which are defined in the introduction.

Proposition 3.6. Let X and Y be normed spaces. If $\sum_{i} T_{i}$ is $l_{\infty}(X)-$ multiplier Cauchy series, $M_{Z}^{\infty}\left(\sum_{i} T_{\mathrm{i}}\right)=M_{w Z}^{\infty}\left(\sum_{i} T_{\mathrm{i}}\right)$.

Proof. We prove that the inclusion $M_{w Z}^{\infty}\left(\sum_{i} T_{\mathrm{i}}\right) \subset$ $M_{Z}^{\infty}\left(\sum_{i} T_{\mathrm{i}}\right)$ is hold. If we take $x=\left(x_{i}\right) \in$ $M_{w Z}^{\infty}\left(\sum_{i} T_{\mathrm{i}}\right)$, then there exists $y_{0} \in Y$ such that
$Z-\sum_{i} f\left(T_{i} x_{i}\right)=f\left(y_{0}\right)$
for every $f \in Y^{*}$. Also, since the series $\sum_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}$ is $l_{\infty}(X)$ - multiplier Cauchy, the series $\sum_{i} T_{i} x_{i}$ is Cauchy in Y. Thus, there exists $F \in Y^{* *}$ such that
$Z-\sum_{i} T_{i} x_{i}=F$.
If consider the uniqueness of limit, then we have $F=y_{0}$. Thus, $x=\left(x_{i}\right) \in M_{Z}^{\infty}\left(\sum_{i} T_{\mathrm{i}}\right)$.

Acknowledgments

This work was supported by the Siirt University Research Fund with Project Number 2018-SİÜEĞT-041.

4. REFERENCES

[1] A. Aizpuru, C. Pérez-Eslava, and J. B. Seoane Sepúlveda, "Matrix summability methods and weakly unconditionally Cauchy series," The Rocky Mountain Journal of Mathematics, vol. 39, no. 2, pp. 367-380, 2009.
[2] F. Albiac and N. J. Kalton, "Topics in Banach Spaces Theory," New York, Springer-Verlag, 2006.
[3] B. Altay and R. Kama, "On Cesàro summability of vector valued multiplier spaces and operator valued series," Positivity, vol. 22, no. 2, pp. 575-586, 2018.
[4] F. Başar, "Summability Theory and Its Applications," Bentham Science Publishers, İstanbul, 2012.
[5] F. Başar and B. Altay, "On the space of sequences of p-bounded variation and related matrix mappings", (English, Ukrainian summary) Ukrain. Mat. Zh., vol. 55 , no. 1, pp. 108-118, 2003; reprinted in Ukrainian Math. J., vol. 55, no. 1, pp. 13614, 2003.
[6] J. Boos and P. Cass, "Classical and Modern Methods in Summability," Oxford University Press, Oxford, 2000.
[7] J. Diestel, "Sequences and Series in Banach Spaces," New York, Springer-Verlag, 1984.
[8] O. Duyar and S. Demiriz, "On vectorvalued operator Riesz sequence spaces," Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 3, pp. 236-247, 2019.
[9] B. Hazarika, T. Karan, and B. K. Singh, "Zweier ideal convergent sequence space defined by Orlicz function," Journal of mathematics and computer science, vol. 8 , no. 3, pp. 307-318, 2014.
[10] V. A. Khan, K. Ebadullah, A. Esi, and M. Shafiq, "On some Zweier I-convergent sequence spaces defined by a modulus function," Afrika Matematika, vol. 26, no. 1-2, pp. 115-125, 2015.
[11] V. A. Khan and N. Khan, "Zweier Iconvergent double sequence spaces defined by a sequence of moduli," Theory and Applications of Mathematics and Computer Science, vol. 5, no. 2, pp. 194-202, 2015.
[12] M. Mursaleen, "Applied Summability Methods, Springer Briefs," Heidelberg New York Dordrecht London, 2014.
[13] F. J. Pérez-Fernández, F. Benítez-Trujillo, and A. Aizpuru, "Characterizations of completeness of normed spaces through weakly unconditionally Cauchy series,"

Czechoslovak Math. J., vol. 50, no. 4, pp. 889-896, 2000.
[14] C. Swartz, "Multiplier Convergent Series," Singapore, World Sci. Publ., 2009.
[15] C. Swartz, "Operator valued series and vector valued multiplier spaces," Casp. J. Math. Sci., vol. 3, no. 2, pp. 277-288, 2014.
[16] M. Şengönül, "On the Zweier sequence space," Demonstratio Mathematica, vol. 40, no. 1, pp. 181-196, 2007

[^0]: * Corresponding Author email: ramazankama@siirt.edu.tr
 ${ }^{1}$ Siirt University, Department of Mathematics and Physical Sciences Education, Siirt, Turkey. ORCID: 0000-0003-3520-1227

