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Ozet. Bu galigmada, genellegtirilmig Jakobi eliptik fonksiyon metodu kullanilarak (2+1)
boyutlu breaking soliton denkleminin periyodik c¢oziimleri ve ¢ok katli soliton ¢oziimleri
sembolik bilgisayar programi yardimiyla elde edilmigtir.

Anahtar Kelimeler. (2+1)-boyutlu breaking soliton denklemi, Jakobi eliptik fonksiyon
metodu, periyodik ¢oziimler, ¢cok kath soliton ¢oziimler, hareket eden dalga c¢oziimleri.

Abstract. In this study, we implemented the generalized Jacobi elliptic function method
with symbolic computation to construct periodic and multiple soliton solutions for the
(2+1)-dimensional breaking soliton equation.
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1. Introduction

The theory of nonlinear dispersive wave motion has recently been the subject of much
study. We do not attempt to characterize the general form of nonlinear dispersive
wave equations [1,2]. Nonlinear phenomena play a crucial role in applied mathe-
matics and physics. Furthermore, when an original nonlinear equation is directly
calculated, the solution will preserve the actual physical characteristics of solutions
[3]. Explicit solutions to the nonlinear equations are of fundamental importance.
Various methods for obtaining explicit solutions to nonlinear evolution equations
have been proposed, and many explicit exact methods have been introduced in lit-

erature [4-36]. Among them are the generalized Miura transformation, Darboux
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transformation, Cole-Hopf transformation, Hirota’s dependent variable transforma-
tion, inverse scattering transform, and Backlund transformation, tanh method, sine-
cosine method, Painleve method, homogeneous balance method, similarity reduction
method, improved tanh method, and so on. In fact, recently a direct algebraic ap-
proach has been constructed for an automated tanh-function method by Parkes and
Duffy [12]. The authors present a Mathematica package that deals with compli-
cated algebra and outputs directly the required solutions for particular nonlinear

equations.

In this study, we implemented the generalized Jacobi elliptic function method [28]
with symbolic computation to construct new double-periodic solutions and multiple

soliton solutions for the (241)-dimensional breaking soliton equation.

2. An Analysis of the Method and Applications

Before starting to use a generalized Jacobi elliptic function method [28], we will give
a simple description of the method. For doing this, one can consider a two variables

general form of nonlinear PDE

Q(u, Uy, Uy, Uy, ...) = 0, (1)

and transform (1) with u(z,t) = u(§), £ = x + ay + [t, where «, 5 is a constant.

After transformation, we get a nonlinear ODE for u(&)
Q' (v, u" u",...) = 0. (2)

The solution of (2) we are looking for is expressed in the form
Ui(€) :a0+2 [ai (&) + b F(€)] (3)
i=1

where £ = = + ay + [t, n is a positive integer that can be determined by balanc-
ing the highest order derivative with the highest nonlinear terms in the equation
a, B,a9,a;,b; and £ can be determined. Substituting (3) into (2) yields a set of

algebraic equations for

Fi (\/A+BF2+CF4>], j=01, i=0,1,2 ..

In this way, all coefficients of F* (VA + BF?+ CF* )J have to vanish. After this

separated algebraic equation, we could find the coefficients «, 3, ag, a;, b; and «.
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In this work, we will consider the solution of the (241)-dimensional breaking soliton
equation by using the generalized Jacobi elliptic function method which is introduced
by Huai-Tang and Hong-Qing [28]. The fundamental of their method is to take
full advantage of the elliptic equation and use its solutions F. The desired elliptic

equation is given as

F? = A+ BF? +CF*, (4)

where F' = T and a, b, ¢ are constants. Some of the solutions are given in [28].

In this study we have given several extra cases so that we have obtained double-
periodic solutions and multiple soliton solutions of (2) in the form of Jacobi elliptic

functions (4).

Example. Consider a (2+1)-dimensional breaking soliton equation
Uy + 4buv, + 4bu,v + bugy, = 0,
Uy — Uy = 0. (5)
For doing this example, we can use transformation with (1) then (5) becomes
Bu' + 4buv’ + 4bu'v + bau”" = 0,
v —au =0, (6)
and integrating (6) yields,
Bu + 4buv + bau” = 0,
v—au = 0. (7)
If v = au and substituting into (7)
Bu + 4bau® + bau” = 0. (8)

Balancing u? with u” then gives n = 2. Therefore, we may choose
by by
= F FPy— 4+ = 9
u=ag+aF +as +F+F2 (9)
Substituting (9) into (8) yields a set of algebraic equations for «, 3, ag, a;, b;. These

systems are found to be

4agba + 2Aagba + 8aybbya + 8agbbyar 4 2bby,Car + a8 = 0,
6 Abbsa + 4bb2a = 0,
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2Abbya + 8bbi by = 0,

4bb% o + 8agbbycr 4+ 4bBbyar + by3 = 0,
8agbbiav + bBbiax + 8a1bbsar + b1 5 = 0,
8agbaia + bBaya + 8asbbiar + a1 = 0,
4a1ba + 8agasba + 4asbBa + asf = 0,
8aiasba + 2a,:6C o = 0,

4aiba + 6axbCa = 0.

From the solutions of the system, we can find

1 3C
a0:§<—B+\/BQ+12AC),a1:O, a ==, b =0,
34

by =~ A#0,b40, a#0, f=—db

VB2 +12AC.

Inan

(10)

With the aid of Mathematica substituting (10) into (9), we have obtained the fol-

lowing double-periodic solutions of (8). If v = au, these solutions are

(i) fA=1,B=—-(1+m?),C=m? =x+ay— (4bVB?> + 12AC ) t.

w =g (-5 + VBT TAC) - L) - 5 (o
%( Ba+¢m) 320‘3712(@_3‘4%

s o) 5 (Gg) -5 (o)

vo= ¢ (~Ba+ VBT 12400 ) - 20 (dzg) _ 34a

(i) fFA=1-m? B=2m?-1,C=-m? { =z +ay— (4bVB>+124C ).

1( B—l—\/m)——cnz(f)—%(

2 2
1 5 Ca , 3Aa
U =5 (—Ba + VB2 + 12AC’a> ——5cn (&) — -

(i) f A=m? -1, B=2-m? C=-1,{ =2+ ay — (4bVB?>+12AC) t.

( B+\/m>——d (g)—%(—

1

T2 2

cn?(§)
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( Ba—l—W@)—gC—&d (5)—@(;)

1
2 2 \dn2(¢€)

(iv) f A= —m?(1—m?), B=2m?-1,C =1, { =1+ ay— (4bvB? + 12AC ) t.

o) (4% ()
s} (-Ba+ VETFTEACa) - 200 () 2 (o >

(V) fA=1-m? B=2-m* C=1,¢{=a+ay— (4bvVB>+ 12AC)

w3 (~B+vEPFI2AC) - X (C”“))Q A (S”“))Q,

2 sn(§) 2 \en(§)

; ( Ba 4+ VB £ 12ACa ) 3(;0‘ ( Eg) Sga (mgg)
(v1)IfA:%,B:m22_2,C= x+ay—<4b\/m 2
U7—%(—B+\/B_2+12AC>_%?(1j:nd(fb)(f))2 (HEd €)>2

%( Ba+ VB2 +12ACa ) - 3Ca (1indn ) Cz ) :
(vi) IfA:mT2, B = m22_2, O:— E=r+ay-— ( BQH?AC)
Ug = % (—B + \/m> — %(sn(&) + ZCTL<§>>2 - 714 <(sn(f) + ch(f))z)’
s = & (=B + VB F12AC ) — 222 (an(e) £ ieni) ?
_ 34a < 1 )
2 \(sn(§) iicn(&))2 ’
w= (B VETAC) - (ﬁnr% + cn<5>)

()
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(viii) If A=, B =

Vg = 1 (—Ba +VDB? 4+ 12ACOé> _ 3

dn(¢)

92 2

2

1 12m
2

uo =3 (- me)
3A

dn(¢)

_ 34a (¢\/1 —m?2sn(§) £+ en(§)

2 ((msn(é) ildn(é)) ) |

(

V1o = 3 < Ba+vB2+12ACQ> - 3Ca

3Aa
(msn(§) £ zdn

1
u11:2< B+ VB?+ 124C

34 (mcn(f) +iy/1 —m?
2 dn(§)

iv1—m?2sn(&

)2_

c-1 §—z+ay—<4b\/m>t.

)icn(f))2

(msn(f) + idn(¢))?

(msn(&) £ idn(€))?

7
- )

(07

1 S EGY Y
V11 = 2 < Ba+ VvV B? + 1214004)

3Aa (mcn 1 m?

1
wa = 5 (~B+ VB> +124C —30

2
—%Cfniz@f-

)

1+

(ot — )

1
Vig = 5 <—Ba +V B2+ 1214004) - 3Ca

S

2

(5%5)

Inan
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2
Uy = % (-B+VBT+ 12AC> - 70 (mﬁ(f)) " dn(g))
34 < j:dn )
2
m3=%< Ba+vBi+mACa>_3g ( 1—4ﬁ3§gidma)2
3o (msn@) + dn(§)>2
2 cn(€) '
o rra="""t gL ol e oy (VBT T2AC ) 1
dn(€) \*
u14—2( B+ VB + 12AC ) <Wsn(€))
34 (1 imsn(f))2
2 dn(§) ‘
vig = % (~Ba+ VBT +124C0 ) - 3(50‘ (1 id;(i ( g))2
3o (1 imsn(§)>2
2 dn(&) '
1 —m? m? +1 1 —m?

() A= —"= B="" C=— ,§:x—|—ay—<4b\/32—|—12AC’)t.

Uy = = (.B+¢§TFEZ_> (<m@)>2

1+ sn(§)
3A (1+sn(€)\’
_T(m@>'
s = % (—Ba +VB T 12ACa) - 320‘ (1 i”;fl)@)

()
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1 —m?2)? 241 1
(xi) 1A=L 4’”) ,B:m; ,C:—Z,§:x+ay—(4b\/32+12AC’>t.

- % (-B+ VB T 124C) - %(mcn(f) + dn(€))?

- % ((mcn(f) i—L dn(f))Q) '

- % (~Ba+ VBT 12400 ) - wT“(mcn(g) L dn(6))?
3Ax 1
2 ((mcn(f) idn(f))2> '
(xii) If A = i, B-— m22+1, - _4m2)2, E=1+ay— (4WM) ‘.
u17=%<—3+m> —% (#jfzn(f))
34 (dn(f) icn(é))2
2 sn(§) '
V17 = % (—Ba + \/MQ> — 362'04 (dn(gn:f:fzn(f))
3Aa (dn(€) £ en(€)\”
2 ( sn(€) ) '
(xiii) If A = i, B = m22_2, C = m{, E=a+ay— <4b\/m>t.
C con 2
s = % (-B+ VB 1240 ) - 37 (\/1_77712(2 dn(g))
34 (midn@)?
2 en(€) '
ws = & (~Ba + VB ¥ 124C )_30@( en(¢) )
18 =5 e} a 5 VT m2 £ dn(é)
3Aa (midn(é))z
2 en(€) |

Here sn(§,m),cn(§,m),dn(§, m) are Jacobi elliptic functions and m denotes the
modulus of the Jacobi elliptic functions. If m — 1, then sn& — tanh &, ecn& — sec hé,
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dn& — sec h{. We can obtain the following multiple soliton solutions of (5).

( 3 3/ tanh(¢) \° 3 [1Esech())?
b é_l_g(lzl:sech(é)> _§< tanh(¢) )

_ 3a 3a( tanh(€) )2_3_oz<1:|:sech(§))2

L Y1 4 8 \1£sech(¢) 8 tanh(&)

where £ =z + ay — 4bt.

_ 3 St - S (L
Uz =3 2 tanh™(¢) 2 (tanh2(§)>

— 30 = 3% ey S (L
V91 = 3 5 tanh”(¢) 5 (tanh2(§)>

where £ = x + ay — 16bt.

If m — 0, then sné — sin&, cné — cosé, dné — 1. We can obtain the following

triangular periodic solutions of (5).

Up = 1— =cot?(£) — = tan®(€)

UVgyy = — 3—Qcot2(§) — 3—O[tan2(£)

where £ = x 4+ ay — 16bt,

where £ =z + ay — 4bt.

3. Conclusion

In this paper, we present the generalized Jacobi elliptic function method by using
ansatz (3) and, with aid of Mathematica, implement it in a computer algebraic
system. An implementation of the method is given by applying it to the (241)-
dimensional breaking soliton equation. We also obtain some new double-periodic
solutions and multiple soliton solutions at the same time. The method can be used

for many other nonlinear equations or coupled ones. In addition, this method is
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also computerizable, which allows us to perform complicated and tedious algebraic

calculations on a computer.
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