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Abstract
This study provides a comprehensive analysis of the investment strategies used in stock markets by 
utilizing evolutionary game theory. The main objective is to investigate the conditions necessary for 
achieving an evolutionary stable equilibrium, which is crucial for a successful investment strategy and 
a rational market process. To achieve a stable investment strategy, investors must focus on returns and 
be wary of yield differences. Yet, empirical observation of this situation can be challenging. Therefore, 
evolutionary theory is selected as the ideal tool to model emotional states and non-rational behaviors, 
such as reciprocity, altruism, and selfishness. The study is divided into three parts. The first part 
presents a literature review on the modeling of investment strategies. In the second part, investment 
strategies are modeled using evolutionary game theory. Finally, in the last part, a behavioral dimension 
is added to the model, revealing the difficulty of rational preferences and evolutionary stable balances 
in the presence of human behavioral preferences. We emphasize the importance of a stable investment 
strategy dominating the market to achieve an equilibrium state. The study highlights the challenge 
of achieving rational preferences and evolutionary stable balances, given the behavioral dimension of 
human preferences.
Keywords: Evolutionary Game Theory, Evolutionary Stable Equilibrium, Replicator Dynamics, 
Conformism, Investment Straregies
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1. Introduction

By utilizing evolutionary game theory, this study delves into investment strategies in the stock 
market and explores the conditions necessary to achieve evolutionary stable equilibrium. While 
it is natural for some stock market participants to come out on top while others fall behind, it’s 
crucial to comprehend the underlying factors. The ultimate goal is to identify an investment 
approach that benefits all parties. Limited rationality and adaptive expectations of economic 
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agents based on past results can lead to investment setbacks in stock markets. To prevent such 
setbacks, investors engage with each other and strive to adopt portfolio rules that yield higher 
returns than their current strategies. However, this doesn’t always result in an evolutionary 
equilibrium where all investors adopt a uniform approach.

Social interactions play a vital role in preventing investment failures, and their impact depends 
on various factors such as group size, reciprocity, selfishness, feelings of fairness, and altruism. 
For example, if players know they will be punished for a failed investment, they may be more 
careful. Similarly, a player living in a community with a sense of reciprocity may try to adapt to 
the community’s investment practices. A sense of trust is also crucial for successful interactions. 
However, since the sensitivity to payoffs differs from player to player, a player with a lower payoff 
strategy may continue to invest in the same stocks. They may believe that the payoff difference 
needs to be more significant to change their strategy. Emotional elements with a behavioral 
dimension should also be considered when developing models. Models should consider the effect 
of conformism and show how unsuccessful strategies with lower returns can continue to exist. 
In other words, the most successful investment strategy cannot eliminate low-return strategies.

Evolutionary game theory is preferred to model conformism and non-yield-dominant motives 
as it uses replicator dynamic equations. It also allows emotional relationships to be established 
between periods. Our study has shown that a stable investment strategy is theoretically possible. 
However, it has yet to be observed in practice. This is an important finding because the behavioral 
dimension of individuals’ preferences leads to irrational preferences.

This study is exceptional, as it employs innovative evolutionary game theory tools to investigate 
the decision-making processes of risk-neutral investigators within a utility function. By revealing 
that low-return investment strategies can conquer the market, this groundbreaking approach 
can significantly advance our understanding of decision-making processes in specific contexts. 
Furthermore, the study provides crucial insights into the social and emotional dimensions that 
impact our preferences and can lead to systematic errors in our choices. This knowledge is crucial 
in developing effective strategies and policies across various fields.

1.1. Literature Review

Investors use different approaches to determine their strategies. These approaches have developed 
and diversified since the 1950s. Kelly (1956) studied a player with different criteria than a typical 
gambler. This player aims to maximize the expected value of the logarithm of their capital on 
each bet. The reason for this is not the value of money but the law of large numbers (Kelly, 1956). 
A follow-up study examined where players can make one-dollar bets every week but cannot reuse 
the earnings. The player must maximize their expectation (expected capital value) on each bet 
this time. In the second case, the strategy is to select the bet with the highest expected return. 
This way, the player can earn more than others who divide their money between bets. This idea 
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shows that rational investors maximize the expected logarithmic value of the portfolio growth 
rate (Amir et al., 2005).

Another investment model, the discounted cash flow approach, accepts the stock price as the 
present value of future cash flows. This approach is also known as net present value. It compares 
the present value of the stock’s future return with the return of a different investment instrument. 
(Williams, 1997). Another model, the Gordon (1959) growth model, proved that an investor’s 
potential return from a stock is the stock’s cash dividend yield. Evstigneev et al. (2002) showed 
that investors consider the rational and future value of stocks when determining their strategies. 
They also consider the discounted value of future dividends. In the long term, stock prices 
coincide with the dividend trend. In other words, two determinants of share prices in the long 
term are dividend payment success and quality.

Stock prices can deviate significantly from their fundamental values in the short-medium term. 
Shiller (1981) first brought attention to this problem of extreme volatility. It makes it difficult to 
determine the investment strategy. Models that assume rational behavior may not be enough to 
explain excessive volatilities. Markowitz (1952) divided the portfolio selection process into two 
stages. The first stage starts with observation and experience. It ends with belief in the future 
performance of existing securities. The second stage starts with belief in the future performance 
of securities. It ends with portfolio selection (Markowitz, 1952). This study focused on the 
second stage. It examined the situation where the investor maximizes the discounted expected 
return. Moreover, it looked at the rule where the investor sees the expected return variance as 
an undesirable variable. Based on this, the geometric relationships between beliefs and portfolio 
selection were demonstrated using the expected returns and returns variance rule. So, the optimal 
strategy for investors is to maximize the discounted value of future returns (Markowitz, 1952). 
Hicks (1939) used a similar approach to Markowitz’s expected value for investment preferences 
of companies instead of individual portfolio selection. In this study, the risks involved in the 
concept of expected value were also examined (Hicks, 1939).

Friedman (1953) and Fama (1965) also showed that the market dynamics naturally select 
rational strategies. These strategies lead to market efficiency in the long run and eliminate other 
strategies. Cowen and High (1988) examined investment strategies in an evolutionary game 
theoretical framework. They demonstrated stationary equilibria for different situations, such 
as the St. Petersburg Paradox, competitive investment, the posterior probability model, and the 
multi-stage investment process. Another critical study by Mehra and Prescott (1985) emphasized 
that investors likely only base their strategies on something other than well-defined preferences 
and objectives.

De Long et al. (1990) stated that if there are rational and many other irrational strategies in the 
market, any set of irrational strategies will be easily eliminated. Accordingly, the market may lose 
its rational valuation with irrational strategy pressure but eventually return to rational strategies 
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with market selection pressure. With this stability feature, the market, which has irrational values 
in the short and medium term, becomes rational in the long term.

Shleifer (2000) stated that random choice strategies can make more money than rational ones. 
So, it is unclear if a randomly chosen investment strategy can be stable over time. Hens and 
Hoppe (2005a) conducted a study that showed financial and insurance markets are stable when 
a strategy that dominates market selection mechanisms can increase its market share against 
another strategy. Brock et al. (2005) presented a general strategy selection framework for a 
market with many different types of investors. This framework is called Large Type Limit. The 
study concluded that in a market with the characteristics of evolutionary systems, the system 
may become unstable if investors are too sensitive to a tiny return difference in another strategy 
(Brock et al., 2005).

Critical studies (Chiarella et al., 2006) argued that a market with only a few investors (ones who 
act based on momentum, short-sighted investors, etc.) could not have a stable strategy. Kane 
(1984) did one of the first studies on how financial regulations affect the market and investors’ 
strategies. Financial innovations can either help or hurt the market and elections. Regulations 
can make information more transparent and help investors succeed, but if the regulations fail, the 
opposite can happen.

Cheng et al. (2011) emphasized how rules and policies to ensure financial stability can harm 
investment strategies by making the financial system riskier. Rubio and Gallego (2016) 
demonstrated that similar policies can promote stability and lower the risk of investment 
strategies. Boz and Mendoza (2014) believe that specific financial regulations can make the 
market overly confident, causing stock prices to rise. They argued that this can mislead investors 
into thinking assets are risk-free, leading to failed strategies.

A study by Alos-Ferrer and Ania (2005) treated asset markets like a game where investors get paid 
based on a return matrix. Investors divide their wealth among different assets. The prices of assets 
are set at market-clearing levels. The study assumed that players copied the best strategy from 
the previous period. The study found that when investors allocate their wealth based on expected 
returns, they reach Nash equilibrium. In this equilibrium, asset prices match the relative expected 
returns. The uniqueness of Nash equilibrium means there must be arbitrage prices whenever asset 
prices are far from equilibrium prices. So, arbitrage transactions bring prices closer to equilibrium 
values. This equilibrium strategy is also evolutionarily stable. In the dynamic evolutionary model, 
wealth tends to flow towards strategies with higher returns in the previous period.

Amir et al. (2005) examined the success of investment strategies and market choices with 
evolutionary tools. In the model, asset returns were assumed to depend on external and 
random factors. Market players use dynamic investment strategies, taking into account available 
information. Current information is based on both current and past experiences. This means the 
investment strategy is affected by intertemporal dynamics. It has been shown that an investor 
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who distributes his wealth based on the conditional expected returns on assets can eventually 
accumulate to the extent of total market wealth.

Hens and Hoppe (2005b) studied how wealth shares change in imperfect markets with short-lived 
assets. They examined how asset prices are determined and how portfolio selection rules perform 
in repeated reinvestment processes. The study used stochastic dynamical systems theory to find 
the necessary and sufficient conditions for the evolutionary stability of portfolio selection rules. 
It was found that when returns are consistent with Markov returns, local stationarity conditions 
can lead to an evolutionarily stable portfolio selection rule. They also proved that the CAPM rule 
always copies the most successful portfolio selection rule and survives. Nevertheless, the mean-
variance optimization rule is not evolutionarily stable (Hens & Hoppe, 2005).

Evstigneev et al. (2006) found that a stock market is stable if stocks are valued based on their 
expected relative dividend performance. If this condition is not met, a new portfolio selection 
rule with minimal initial wealth can conquer the market. Even if rational strategies face risk in 
a market with irrational strategies, irrational strategies can easily be replaced by a new set of 
strategies. This means that rational strategies can eventually lead to rational valuation in a market 
where assets are undervalued due to irrational strategies. This stability may explain why stock 
markets seem more rational in the long term than in the short and medium term. These findings 
support Friedman’s (1953) belief that the market naturally chooses strategies that promote 
efficiency.

These studies show that investors use different criteria when determining their strategies. If the 
success of the chosen investment strategy is directly based on yield, the strategy that provides 
more return is more successful. Thus, in such a situation, other agents in the market will try to 
copy the most successful strategy.

2. Model

In this section, we’ll analyze an investor utility function with evolutionary game theory tools. 
Again, the primary motivation is to copy the most successful strategy. Suppose there is a stock 
market in which
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•	 The distribution of dividends depends on the company’s economic performance, cyclical 
fluctuations, and external factors.
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crucial factors. These include the dividends received at the end of period t (beginning of period 
t+1), the investment strategies and wealth of other players, as well as the portfolio sizes determined 
by other investors based on their own preferred investment strategies and wealth.

This section describes the stock market that is primarily suitable for risk-neutral investors. For 
risk-averse investors, the rule to create a portfolio is to ensure that the risk premium satisfies their 
satisfaction level. This analysis excludes external shocks and sudden fluctuations caused by them. 
The focus of this examination is on the situation where investors invest their wealth in the stock 
market. In summary, this market assumes that long-term volatility is less than short-term, risk-
neutral investors dominate the market, information is reachable and returns from dividends are 
reinvested.

Utility functions will be defined and evolutionary game theory tools will be utilized under the 
given limitations. The model can be generalized to include multiple categories of investors, 
unexpected market instabilities, asymmetric information and the presence of consumer goods 
in the analysis.

2.2. Utilitiy Functions

As humans are inherently social creatures, it is imperative that investors broaden their utility 
functions beyond solely focusing on returns. It is crucial to consider non-return effects in order 
to make informed investment decisions.

The utility function of player x (the player who determines strategy x) will be
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analysis. The former coefficient represents the fraction of individuals who follow 
the same investment strategy in all conditions, even if it may lead to potential loss. 
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Conformism is a complex topic debated by scholars and philosophers for many 
years. At its core, it refers to respecting and adapting to the opinions and values of 
society or one's close circle without opposing them.  
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norms can foster a sense of unity and belonging that benefits individuals and 
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thinking and independent thought, hindering personal growth and societal 
progress. Even if agents experience financial losses, the individual derives 
satisfaction from sticking to the same strategy. 

In this particular context, 𝜑𝜑 denotes the percentage of individuals who would not 
choose a particular strategy, despite its potential financial gains. This particular 
group of people may be influenced by various factors, such as their cultural, 
political, or ideological beliefs, or they may have a narrow perspective. As a result, 
the conformist effect is also present in this situation. 

Another important factor which determines investor x's intangible benefit is a 
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as ∑ 𝜈𝜈!"𝑈𝑈"" . Here 𝑏𝑏 = 1,2, … … . . , 𝑌𝑌 refers to all other investors (𝑥𝑥 ≠ 𝑏𝑏) and 
𝜈𝜈#+  refers to the sensitivity of player x to the return/benefit level of other players.  
This model surpasses previous ones by incorporating non-return effects and 
analyzing the impact of key human emotions such as altruism, selfishness, and 
reciprocity. Player x's sensitivity to the benefit of other investors can be written 
similar as Bowles (2006) study: 

𝜈𝜈#+ = (𝑎𝑎# + 𝐷𝐷#𝑎𝑎+) 1 +⁄ 𝐷𝐷#						(6) 

where 𝑎𝑎# ∈ [−1,1], 𝑎𝑎+ ∈ [−1,1] and 𝐷𝐷# ≥ 0. 𝑎𝑎#	represents the unconditional 
good or bad will (altruism or feeling of grudge/anger/hate) of player x. 𝑎𝑎+ 
indicates player x's belief about other players' opinions of her and lastly 𝐷𝐷# shows 
the level of importance that player x attaches to other players' opinions about her. 

• If 𝑎𝑎# = 0 and 𝐷𝐷# > 0, player x is not altruistic and attaches 
importance to reciprocity in behavior. This player does not have an 
unconditionally good or bad norm of behavior and shapes his thoughts 
based on the behavior of others. 
• If 𝑎𝑎# ≠ 0 and 𝐷𝐷# = 0, player x acts as an unconditional altruist 
according to the sign of 𝑎𝑎# (if	𝑎𝑎# > 0)	. Therefore, in these conditions, 
unconditional hatred may also arise. 
• The denominator in the equation	𝜈𝜈#+  increases according to	𝐷𝐷#. 
Since the maximum value that 𝑎𝑎# can take is 1, it can be written 𝜈𝜈#+ ≤
1. Hence, player x's valuation of other players' payoffs (utilities) cannot 
be greater than her own payoff (utility).  
• The derivative of the expression with respect to 𝐷𝐷# varies 
depending on the sign of (𝑎𝑎+	 − 𝑎𝑎#). Due to reciprocity, if the player x 
interacts with is kinder, more gentle or better than herself, the weight of 
the other player's payoff in x's utility function increases. Therefore, moral 
and subjective values come to the fore here. 
• If 𝑎𝑎# = 𝑎𝑎+ then 𝜈𝜈#+ = 𝑎𝑎# . In this situation sensitivity to other 
investors' returns (utilities) is determined directly based on the player x's 
unconditional opinion. 

It's important to note that as 𝜗𝜗 decreases, yield-dependent factors become 
increasingly critical. This also means that the utility function becomes more 
return-oriented. As a result, a return-oriented individual focuses solely on returns 
and neglects the behavioral and emotional aspects of their decisions. 
Briefly, each player is believed to have a benefit function that aligns with the 
strategy they choose. This utiility function takes into account various factors, 
including both material and behavioral aspects. Essentially, the benefit that a 
player receives from a particular strategy is determined by how well that strategy 
aligns with their goals and preferences. As the game progresses, players may 
choose to change their strategy based on how their benefit function evolves over 
time. This can be influenced by a variety of factors, including changes in the game 
environment, the actions of other players, and the player's own internal 
motivations and preferences. Ultimately, successful game play requires a deep 
understanding of the benefit functions of all players involved, as well as an ability 
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This also means that the utility function becomes more return-oriented. As a result, a return-
oriented individual focuses solely on returns and neglects the behavioral and emotional aspects 
of their decisions.

Briefly, each player is believed to have a benefit function that aligns with the strategy they choose. 
This utiility function takes into account various factors, including both material and behavioral 
aspects. Essentially, the benefit that a player receives from a particular strategy is determined by 
how well that strategy aligns with their goals and preferences. As the game progresses, players 
may choose to change their strategy based on how their benefit function evolves over time. This 
can be influenced by a variety of factors, including changes in the game environment, the actions 
of other players, and the player’s own internal motivations and preferences. Ultimately, successful 
game play requires a deep understanding of the benefit functions of all players involved, as 
well as an ability to adapt to changing circumstances and anticipate the strategic moves of one’s 
opponents.

2.2.1. Evidence of Irrational Investors

This study provides compelling evidence that investors are capable of making irrational decisions 
while strictly adhering to them, as a result of the behavioral dimension or conformist effect. 
Our novel model, which has not been studied before, enables us to analyze this phenomenon in 
greater depth and with greater certainty. Notwithstanding the divergence in mechanics, several 
crucial empirical studies have arrived at comparable conclusions to ours.

In 2015, Mamun et al. conducted a study on 200 individual investors in the Dhaka Stock Exchange 
(DSE) to gain insights into their behavior. The researchers analyzed the participants’ responses to 
various questions related to the concept of rationality and irrationality. The aim of the study was 
to determine the actual investing behaviors of the participants and to understand whether they 
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acted rationally or irrationally. Through empirical research, it has been determined that a hybrid 
approach, combining aspects of efficient market hypotheses (the idea of rational investment 
markets) and behavioral modeling, yields a deeper understanding of investor behavior in financial 
brands. One of the fundamental principles considered in our study is the assumption presented 
here in. This premise provides the basis for our research, and its importance is paramount in our 
analysis.

A study conducted in China proves that investors in the real world often exhibit irrational 
behavior, such as herd behavior, due to market frictions and psychological factors, which 
contradicts the efficient market hypothesis. The research proves that irrational investors are 
influenced by herding behavior and behavioral dimensions; herding behavior is caused by loss 
aversion and predictive expectation (Jianhua et al., 2020).

Mushinada analyzed detailed survey data from 384 Indian investors to investigate whether self-
attribution bias and overconfidence bias exist in the Indian stock market. He also examined 
if individual investors are adaptable to market dynamics. The study found evidence for the 
existence of cognitive biases alongside rationality. It was observed that investors tend to adapt to 
the changing environment once they experience losses or uncertain events. However, during this 
process, investors sometimes exhibit apparently irrational behavior (Mushinada, 2020).

Hirsleifer et al. (2006) proposed a model in which investors trade irrationally based on factors that 
are not necessarily connected to the actual fundamentals of the market. However, since trading 
activity has an impact on market prices, irrational trades can also influence the underlying cash 
flows. In certain situations, it is proved that irrational investors can earn profits that are higher 
than the profits made by informed, rational investors.

The results of the replicator that we theoretically modeled in this study unequivocally align with 
the empirical studies presented in this section. The present study’s theoretical framework is 
ambitious, and it is essential to emphasize that this work is open to improvements, particularly 
empirically. In this respect, we also emphasize that our study aims to prove in the theoretical 
framework with evolutionary game theory that the return-dominant strategy cannot capture the 
stock market in the presence of non-return effects and irrational investors.

2.2.2. Utility Level Differentials and Strategic Behaviour

Economics serves as the cornerstone of utility theory, providing a profound collection of theories 
that researchers from all utility-related disciplines have employed, expanded, and adapted. 
The results are rigorous framework that enables researchers to scrutinize and develop a deeper 
understanding of the rational behavior of consumers (Fishburn, 1968).

While there is general agreement regarding the extent of utility theory, its practical application 
is subject to varying perspectives. These perspectives arise from differing interpretations of the 
fundamental tenets of preference and decision-making, which have been shaped by the fields 
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in which the theory is employed, such as economics, psychology, statistics, and management 
science.

Utility function, which serves as a mathematical tool for evaluating an individual’s subjective 
preferences for varying levels of total wealth. This function enables investors to quantify their 
satisfaction levels based on the outcomes of their financial decisions. Essentially, it measures 
the individual’s relative preference for various amounts of wealth, and is a critical component 
in the determination of optimal investment strategies. By modeling investors’ utility functions, 
financial analysts and planners can better understand their clients’ investment objectives and 
design portfolios that align with their risk tolerance and goals.

The foundation of utility theory is based on the acknowledgement of humans’ insatiable nature 
and their tendency to act rationally. The non-satiation property is an economic principle that 
posits that an individual’s utility increases with a higher level of wealth. This implies that an 
investor always favors a higher level of wealth and is never satiated with their current wealth 
level (Norstad, 2011). It is imperative to note that investors may possess varying utility functions; 
however, it is essential to assume that all functions adhere to the non-satiationary property.

So, the utility maximization theory posits that investors, when presented with a range of feasible 
investment alternatives, will opt for the investment that maximizes their expected utility of 
wealth. This principle is founded on the tenet that investors are motivated by utility.

As we have seen in the previous chapters, this study is also founded on the notion that human 
strategic behavior is driven by seeking the maximum benefit. Consequently, strategic behavior is 
observed, but we have opted for a modern approach known as evolutionary game theory rather 
than a traditional game theoretical approach. To analyze the process, we leverage the replicator 
dynamics technique.

 Nevertheless, there are instances where individuals may prioritize moral pleasure over material 
gain, leading them to relinquish material possessions. Our study’s most important contribution 
to the literature will be this finding, which will undoubtedly add immense value to the existing 
knowledge.

2.3. Replicator Dynamic

The replicator dynamic models the likelihood that the more beneficial strategy will be copied by 
other players. It can be written as

The replicator dynamic models the likelihood that the more beneficial strategy 
will be copied by other players. It can be written as  

𝑥𝑥, = 𝑥𝑥 − 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X + 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)W1 − 𝜍𝜍-.#X𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X		(7) 

In any period there are x investors (with utility function 𝑈𝑈#) who adopt strategy 𝑥𝑥. 
Within this fraction 𝜐𝜐 is eligible to change strategy. With probability	𝑥𝑥(1 − 𝑥𝑥) a x 
person will match with y person and with probability 𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X a strategy 
change will occur as a result of this interaction. The factor that enables this strategy 
change is the yield difference or information about independent-return factors.  If 
𝑈𝑈- > 𝑈𝑈# then 𝜍𝜍-.# = 1 accepted. Otherwise, the expression will be equal to 0. 
Replicator dynamics can be arranged as follows: 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X				(7.1) 

In replicator dynamic 7.1, the parameter 𝜐𝜐 represents the fraction of players who 
interact to change their strategy. This parameter determines the rate at which the 
strategies in the population evolve over time. The larger the value of 𝜐𝜐, the faster 
the strategies will change.  
The coefficient τ	∈ [−1,1]  is a measure of the human character and the feasibility 
of strategic behavior. To better understand this concept, consider a scenario where 
the coefficient equals 1. In such a case, it can be said that the economic actor is 
homo-economicus, which means that she is rational, self-interested, and fully 
responsive to any changes in the environment. Specifically, such an investor is 
highly sensitive to the differences in her utility level and immediately adjusts 
strategy to maximize her utility. This type of investor is unlikely to make 
systematic errors since they are well-versed in all the relevant information and 
have a clear understanding of the risks and benefits associated with decisions. In 
other words, this actor is capable of making the best possible decisions at any 
given time, without being influenced by emotions or external factors. This makes 
her a valuable asset in the economic landscape, where efficiency, accuracy, and 
profitability are highly valued. 

In the event that the coefficient is zero, strategic behavior will be rendered 
obsolete. Consequently, the effectiveness of investment strategies will lose 
significance, and the validity of the utility theory will be called into question. This 
is due to the failure of the replicator dynamics to function when the coefficient 
reaches zero. In short, if τ is high, players will be more sensitive to changes in 
payoff and may switch strategies more frequently. If τ is low, players will be less 
likely to switch strategies and the population will evolve more slowly. 

It is important to note that these parameters are interdependent and influence each 
other. Changes in the value of one parameter can affect the rate of evolution and 
stability of strategies in the population.  
The velocity of the evolutionary process is determined by the mathematical 
expression 𝑥𝑥(1 − 𝑥𝑥). A uniform population tends to decelerate the process, while 
a diverse population accelerates it. It is apparent that this expression attains its 
maximum value at 𝑥𝑥	 = 	1/2. As a result, an equitably divided population will 
maximize the rate of alteration in x, while holding other variables constant. 
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𝑈𝑈- > 𝑈𝑈# then 𝜍𝜍-.# = 1 accepted. Otherwise, the expression will be equal to 0. 
Replicator dynamics can be arranged as follows: 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X				(7.1) 

In replicator dynamic 7.1, the parameter 𝜐𝜐 represents the fraction of players who 
interact to change their strategy. This parameter determines the rate at which the 
strategies in the population evolve over time. The larger the value of 𝜐𝜐, the faster 
the strategies will change.  
The coefficient τ	∈ [−1,1]  is a measure of the human character and the feasibility 
of strategic behavior. To better understand this concept, consider a scenario where 
the coefficient equals 1. In such a case, it can be said that the economic actor is 
homo-economicus, which means that she is rational, self-interested, and fully 
responsive to any changes in the environment. Specifically, such an investor is 
highly sensitive to the differences in her utility level and immediately adjusts 
strategy to maximize her utility. This type of investor is unlikely to make 
systematic errors since they are well-versed in all the relevant information and 
have a clear understanding of the risks and benefits associated with decisions. In 
other words, this actor is capable of making the best possible decisions at any 
given time, without being influenced by emotions or external factors. This makes 
her a valuable asset in the economic landscape, where efficiency, accuracy, and 
profitability are highly valued. 

In the event that the coefficient is zero, strategic behavior will be rendered 
obsolete. Consequently, the effectiveness of investment strategies will lose 
significance, and the validity of the utility theory will be called into question. This 
is due to the failure of the replicator dynamics to function when the coefficient 
reaches zero. In short, if τ is high, players will be more sensitive to changes in 
payoff and may switch strategies more frequently. If τ is low, players will be less 
likely to switch strategies and the population will evolve more slowly. 

It is important to note that these parameters are interdependent and influence each 
other. Changes in the value of one parameter can affect the rate of evolution and 
stability of strategies in the population.  
The velocity of the evolutionary process is determined by the mathematical 
expression 𝑥𝑥(1 − 𝑥𝑥). A uniform population tends to decelerate the process, while 
a diverse population accelerates it. It is apparent that this expression attains its 
maximum value at 𝑥𝑥	 = 	1/2. As a result, an equitably divided population will 
maximize the rate of alteration in x, while holding other variables constant. 
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In any period there are x investors (with utility function 𝑈𝑈#) who adopt strategy 𝑥𝑥. 
Within this fraction 𝜐𝜐 is eligible to change strategy. With probability	𝑥𝑥(1 − 𝑥𝑥) a x 
person will match with y person and with probability 𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X a strategy 
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change is the yield difference or information about independent-return factors.  If 
𝑈𝑈- > 𝑈𝑈# then 𝜍𝜍-.# = 1 accepted. Otherwise, the expression will be equal to 0. 
Replicator dynamics can be arranged as follows: 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X				(7.1) 

In replicator dynamic 7.1, the parameter 𝜐𝜐 represents the fraction of players who 
interact to change their strategy. This parameter determines the rate at which the 
strategies in the population evolve over time. The larger the value of 𝜐𝜐, the faster 
the strategies will change.  
The coefficient τ	∈ [−1,1]  is a measure of the human character and the feasibility 
of strategic behavior. To better understand this concept, consider a scenario where 
the coefficient equals 1. In such a case, it can be said that the economic actor is 
homo-economicus, which means that she is rational, self-interested, and fully 
responsive to any changes in the environment. Specifically, such an investor is 
highly sensitive to the differences in her utility level and immediately adjusts 
strategy to maximize her utility. This type of investor is unlikely to make 
systematic errors since they are well-versed in all the relevant information and 
have a clear understanding of the risks and benefits associated with decisions. In 
other words, this actor is capable of making the best possible decisions at any 
given time, without being influenced by emotions or external factors. This makes 
her a valuable asset in the economic landscape, where efficiency, accuracy, and 
profitability are highly valued. 

In the event that the coefficient is zero, strategic behavior will be rendered 
obsolete. Consequently, the effectiveness of investment strategies will lose 
significance, and the validity of the utility theory will be called into question. This 
is due to the failure of the replicator dynamics to function when the coefficient 
reaches zero. In short, if τ is high, players will be more sensitive to changes in 
payoff and may switch strategies more frequently. If τ is low, players will be less 
likely to switch strategies and the population will evolve more slowly. 

It is important to note that these parameters are interdependent and influence each 
other. Changes in the value of one parameter can affect the rate of evolution and 
stability of strategies in the population.  
The velocity of the evolutionary process is determined by the mathematical 
expression 𝑥𝑥(1 − 𝑥𝑥). A uniform population tends to decelerate the process, while 
a diverse population accelerates it. It is apparent that this expression attains its 
maximum value at 𝑥𝑥	 = 	1/2. As a result, an equitably divided population will 
maximize the rate of alteration in x, while holding other variables constant. 
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interaction. The factor that enables this strategy change is the yield difference or information about 
independent-return factors. If 

The replicator dynamic models the likelihood that the more beneficial strategy 
will be copied by other players. It can be written as  

𝑥𝑥, = 𝑥𝑥 − 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X + 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)W1 − 𝜍𝜍-.#X𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X		(7) 

In any period there are x investors (with utility function 𝑈𝑈#) who adopt strategy 𝑥𝑥. 
Within this fraction 𝜐𝜐 is eligible to change strategy. With probability	𝑥𝑥(1 − 𝑥𝑥) a x 
person will match with y person and with probability 𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X a strategy 
change will occur as a result of this interaction. The factor that enables this strategy 
change is the yield difference or information about independent-return factors.  If 
𝑈𝑈- > 𝑈𝑈# then 𝜍𝜍-.# = 1 accepted. Otherwise, the expression will be equal to 0. 
Replicator dynamics can be arranged as follows: 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X				(7.1) 

In replicator dynamic 7.1, the parameter 𝜐𝜐 represents the fraction of players who 
interact to change their strategy. This parameter determines the rate at which the 
strategies in the population evolve over time. The larger the value of 𝜐𝜐, the faster 
the strategies will change.  
The coefficient τ	∈ [−1,1]  is a measure of the human character and the feasibility 
of strategic behavior. To better understand this concept, consider a scenario where 
the coefficient equals 1. In such a case, it can be said that the economic actor is 
homo-economicus, which means that she is rational, self-interested, and fully 
responsive to any changes in the environment. Specifically, such an investor is 
highly sensitive to the differences in her utility level and immediately adjusts 
strategy to maximize her utility. This type of investor is unlikely to make 
systematic errors since they are well-versed in all the relevant information and 
have a clear understanding of the risks and benefits associated with decisions. In 
other words, this actor is capable of making the best possible decisions at any 
given time, without being influenced by emotions or external factors. This makes 
her a valuable asset in the economic landscape, where efficiency, accuracy, and 
profitability are highly valued. 

In the event that the coefficient is zero, strategic behavior will be rendered 
obsolete. Consequently, the effectiveness of investment strategies will lose 
significance, and the validity of the utility theory will be called into question. This 
is due to the failure of the replicator dynamics to function when the coefficient 
reaches zero. In short, if τ is high, players will be more sensitive to changes in 
payoff and may switch strategies more frequently. If τ is low, players will be less 
likely to switch strategies and the population will evolve more slowly. 

It is important to note that these parameters are interdependent and influence each 
other. Changes in the value of one parameter can affect the rate of evolution and 
stability of strategies in the population.  
The velocity of the evolutionary process is determined by the mathematical 
expression 𝑥𝑥(1 − 𝑥𝑥). A uniform population tends to decelerate the process, while 
a diverse population accelerates it. It is apparent that this expression attains its 
maximum value at 𝑥𝑥	 = 	1/2. As a result, an equitably divided population will 
maximize the rate of alteration in x, while holding other variables constant. 

 accepted. Otherwise, the expression will 
be equal to 0. Replicator dynamics can be arranged as follows:

The replicator dynamic models the likelihood that the more beneficial strategy 
will be copied by other players. It can be written as  
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In any period there are x investors (with utility function 𝑈𝑈#) who adopt strategy 𝑥𝑥. 
Within this fraction 𝜐𝜐 is eligible to change strategy. With probability	𝑥𝑥(1 − 𝑥𝑥) a x 
person will match with y person and with probability 𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X a strategy 
change will occur as a result of this interaction. The factor that enables this strategy 
change is the yield difference or information about independent-return factors.  If 
𝑈𝑈- > 𝑈𝑈# then 𝜍𝜍-.# = 1 accepted. Otherwise, the expression will be equal to 0. 
Replicator dynamics can be arranged as follows: 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X				(7.1) 

In replicator dynamic 7.1, the parameter 𝜐𝜐 represents the fraction of players who 
interact to change their strategy. This parameter determines the rate at which the 
strategies in the population evolve over time. The larger the value of 𝜐𝜐, the faster 
the strategies will change.  
The coefficient τ	∈ [−1,1]  is a measure of the human character and the feasibility 
of strategic behavior. To better understand this concept, consider a scenario where 
the coefficient equals 1. In such a case, it can be said that the economic actor is 
homo-economicus, which means that she is rational, self-interested, and fully 
responsive to any changes in the environment. Specifically, such an investor is 
highly sensitive to the differences in her utility level and immediately adjusts 
strategy to maximize her utility. This type of investor is unlikely to make 
systematic errors since they are well-versed in all the relevant information and 
have a clear understanding of the risks and benefits associated with decisions. In 
other words, this actor is capable of making the best possible decisions at any 
given time, without being influenced by emotions or external factors. This makes 
her a valuable asset in the economic landscape, where efficiency, accuracy, and 
profitability are highly valued. 

In the event that the coefficient is zero, strategic behavior will be rendered 
obsolete. Consequently, the effectiveness of investment strategies will lose 
significance, and the validity of the utility theory will be called into question. This 
is due to the failure of the replicator dynamics to function when the coefficient 
reaches zero. In short, if τ is high, players will be more sensitive to changes in 
payoff and may switch strategies more frequently. If τ is low, players will be less 
likely to switch strategies and the population will evolve more slowly. 

It is important to note that these parameters are interdependent and influence each 
other. Changes in the value of one parameter can affect the rate of evolution and 
stability of strategies in the population.  
The velocity of the evolutionary process is determined by the mathematical 
expression 𝑥𝑥(1 − 𝑥𝑥). A uniform population tends to decelerate the process, while 
a diverse population accelerates it. It is apparent that this expression attains its 
maximum value at 𝑥𝑥	 = 	1/2. As a result, an equitably divided population will 
maximize the rate of alteration in x, while holding other variables constant. 

In replicator dynamic 7.1, the parameter 

The replicator dynamic models the likelihood that the more beneficial strategy 
will be copied by other players. It can be written as  

𝑥𝑥, = 𝑥𝑥 − 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X + 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)W1 − 𝜍𝜍-.#X𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X		(7) 

In any period there are x investors (with utility function 𝑈𝑈#) who adopt strategy 𝑥𝑥. 
Within this fraction 𝜐𝜐 is eligible to change strategy. With probability	𝑥𝑥(1 − 𝑥𝑥) a x 
person will match with y person and with probability 𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X a strategy 
change will occur as a result of this interaction. The factor that enables this strategy 
change is the yield difference or information about independent-return factors.  If 
𝑈𝑈- > 𝑈𝑈# then 𝜍𝜍-.# = 1 accepted. Otherwise, the expression will be equal to 0. 
Replicator dynamics can be arranged as follows: 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X				(7.1) 

In replicator dynamic 7.1, the parameter 𝜐𝜐 represents the fraction of players who 
interact to change their strategy. This parameter determines the rate at which the 
strategies in the population evolve over time. The larger the value of 𝜐𝜐, the faster 
the strategies will change.  
The coefficient τ	∈ [−1,1]  is a measure of the human character and the feasibility 
of strategic behavior. To better understand this concept, consider a scenario where 
the coefficient equals 1. In such a case, it can be said that the economic actor is 
homo-economicus, which means that she is rational, self-interested, and fully 
responsive to any changes in the environment. Specifically, such an investor is 
highly sensitive to the differences in her utility level and immediately adjusts 
strategy to maximize her utility. This type of investor is unlikely to make 
systematic errors since they are well-versed in all the relevant information and 
have a clear understanding of the risks and benefits associated with decisions. In 
other words, this actor is capable of making the best possible decisions at any 
given time, without being influenced by emotions or external factors. This makes 
her a valuable asset in the economic landscape, where efficiency, accuracy, and 
profitability are highly valued. 

In the event that the coefficient is zero, strategic behavior will be rendered 
obsolete. Consequently, the effectiveness of investment strategies will lose 
significance, and the validity of the utility theory will be called into question. This 
is due to the failure of the replicator dynamics to function when the coefficient 
reaches zero. In short, if τ is high, players will be more sensitive to changes in 
payoff and may switch strategies more frequently. If τ is low, players will be less 
likely to switch strategies and the population will evolve more slowly. 

It is important to note that these parameters are interdependent and influence each 
other. Changes in the value of one parameter can affect the rate of evolution and 
stability of strategies in the population.  
The velocity of the evolutionary process is determined by the mathematical 
expression 𝑥𝑥(1 − 𝑥𝑥). A uniform population tends to decelerate the process, while 
a diverse population accelerates it. It is apparent that this expression attains its 
maximum value at 𝑥𝑥	 = 	1/2. As a result, an equitably divided population will 
maximize the rate of alteration in x, while holding other variables constant. 

 represents the fraction of players who interact to 
change their strategy. This parameter determines the rate at which the strategies in the population 
evolve over time. The larger the value of 

The replicator dynamic models the likelihood that the more beneficial strategy 
will be copied by other players. It can be written as  

𝑥𝑥, = 𝑥𝑥 − 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X + 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)W1 − 𝜍𝜍-.#X𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X		(7) 

In any period there are x investors (with utility function 𝑈𝑈#) who adopt strategy 𝑥𝑥. 
Within this fraction 𝜐𝜐 is eligible to change strategy. With probability	𝑥𝑥(1 − 𝑥𝑥) a x 
person will match with y person and with probability 𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X a strategy 
change will occur as a result of this interaction. The factor that enables this strategy 
change is the yield difference or information about independent-return factors.  If 
𝑈𝑈- > 𝑈𝑈# then 𝜍𝜍-.# = 1 accepted. Otherwise, the expression will be equal to 0. 
Replicator dynamics can be arranged as follows: 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X				(7.1) 

In replicator dynamic 7.1, the parameter 𝜐𝜐 represents the fraction of players who 
interact to change their strategy. This parameter determines the rate at which the 
strategies in the population evolve over time. The larger the value of 𝜐𝜐, the faster 
the strategies will change.  
The coefficient τ	∈ [−1,1]  is a measure of the human character and the feasibility 
of strategic behavior. To better understand this concept, consider a scenario where 
the coefficient equals 1. In such a case, it can be said that the economic actor is 
homo-economicus, which means that she is rational, self-interested, and fully 
responsive to any changes in the environment. Specifically, such an investor is 
highly sensitive to the differences in her utility level and immediately adjusts 
strategy to maximize her utility. This type of investor is unlikely to make 
systematic errors since they are well-versed in all the relevant information and 
have a clear understanding of the risks and benefits associated with decisions. In 
other words, this actor is capable of making the best possible decisions at any 
given time, without being influenced by emotions or external factors. This makes 
her a valuable asset in the economic landscape, where efficiency, accuracy, and 
profitability are highly valued. 

In the event that the coefficient is zero, strategic behavior will be rendered 
obsolete. Consequently, the effectiveness of investment strategies will lose 
significance, and the validity of the utility theory will be called into question. This 
is due to the failure of the replicator dynamics to function when the coefficient 
reaches zero. In short, if τ is high, players will be more sensitive to changes in 
payoff and may switch strategies more frequently. If τ is low, players will be less 
likely to switch strategies and the population will evolve more slowly. 

It is important to note that these parameters are interdependent and influence each 
other. Changes in the value of one parameter can affect the rate of evolution and 
stability of strategies in the population.  
The velocity of the evolutionary process is determined by the mathematical 
expression 𝑥𝑥(1 − 𝑥𝑥). A uniform population tends to decelerate the process, while 
a diverse population accelerates it. It is apparent that this expression attains its 
maximum value at 𝑥𝑥	 = 	1/2. As a result, an equitably divided population will 
maximize the rate of alteration in x, while holding other variables constant. 
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The replicator dynamic models the likelihood that the more beneficial strategy 
will be copied by other players. It can be written as  
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In any period there are x investors (with utility function 𝑈𝑈#) who adopt strategy 𝑥𝑥. 
Within this fraction 𝜐𝜐 is eligible to change strategy. With probability	𝑥𝑥(1 − 𝑥𝑥) a x 
person will match with y person and with probability 𝜍𝜍-.#𝜏𝜏W𝑈𝑈- − 𝑈𝑈#X a strategy 
change will occur as a result of this interaction. The factor that enables this strategy 
change is the yield difference or information about independent-return factors.  If 
𝑈𝑈- > 𝑈𝑈# then 𝜍𝜍-.# = 1 accepted. Otherwise, the expression will be equal to 0. 
Replicator dynamics can be arranged as follows: 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X				(7.1) 

In replicator dynamic 7.1, the parameter 𝜐𝜐 represents the fraction of players who 
interact to change their strategy. This parameter determines the rate at which the 
strategies in the population evolve over time. The larger the value of 𝜐𝜐, the faster 
the strategies will change.  
The coefficient τ	∈ [−1,1]  is a measure of the human character and the feasibility 
of strategic behavior. To better understand this concept, consider a scenario where 
the coefficient equals 1. In such a case, it can be said that the economic actor is 
homo-economicus, which means that she is rational, self-interested, and fully 
responsive to any changes in the environment. Specifically, such an investor is 
highly sensitive to the differences in her utility level and immediately adjusts 
strategy to maximize her utility. This type of investor is unlikely to make 
systematic errors since they are well-versed in all the relevant information and 
have a clear understanding of the risks and benefits associated with decisions. In 
other words, this actor is capable of making the best possible decisions at any 
given time, without being influenced by emotions or external factors. This makes 
her a valuable asset in the economic landscape, where efficiency, accuracy, and 
profitability are highly valued. 

In the event that the coefficient is zero, strategic behavior will be rendered 
obsolete. Consequently, the effectiveness of investment strategies will lose 
significance, and the validity of the utility theory will be called into question. This 
is due to the failure of the replicator dynamics to function when the coefficient 
reaches zero. In short, if τ is high, players will be more sensitive to changes in 
payoff and may switch strategies more frequently. If τ is low, players will be less 
likely to switch strategies and the population will evolve more slowly. 

It is important to note that these parameters are interdependent and influence each 
other. Changes in the value of one parameter can affect the rate of evolution and 
stability of strategies in the population.  
The velocity of the evolutionary process is determined by the mathematical 
expression 𝑥𝑥(1 − 𝑥𝑥). A uniform population tends to decelerate the process, while 
a diverse population accelerates it. It is apparent that this expression attains its 
maximum value at 𝑥𝑥	 = 	1/2. As a result, an equitably divided population will 
maximize the rate of alteration in x, while holding other variables constant. 
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have a clear understanding of the risks and benefits associated with decisions. In 
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given time, without being influenced by emotions or external factors. This makes 
her a valuable asset in the economic landscape, where efficiency, accuracy, and 
profitability are highly valued. 

In the event that the coefficient is zero, strategic behavior will be rendered 
obsolete. Consequently, the effectiveness of investment strategies will lose 
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is due to the failure of the replicator dynamics to function when the coefficient 
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payoff and may switch strategies more frequently. If τ is low, players will be less 
likely to switch strategies and the population will evolve more slowly. 

It is important to note that these parameters are interdependent and influence each 
other. Changes in the value of one parameter can affect the rate of evolution and 
stability of strategies in the population.  
The velocity of the evolutionary process is determined by the mathematical 
expression 𝑥𝑥(1 − 𝑥𝑥). A uniform population tends to decelerate the process, while 
a diverse population accelerates it. It is apparent that this expression attains its 
maximum value at 𝑥𝑥	 = 	1/2. As a result, an equitably divided population will 
maximize the rate of alteration in x, while holding other variables constant. 
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apparent that this expression attains its maximum value at x=1/2 As a result, an equitably divided 
population will maximize the rate of alteration in x, while holding other variables constant.

The residual component of the replicator dynamic can be represented mathematically as The residual component of the replicator dynamic can be represented 
mathematically as 𝜐𝜐𝜐𝜐W𝑈𝑈#(𝑥𝑥) − 𝑈𝑈-(𝑥𝑥)X. The rate of update and utility functions 
are contingent on the level of x within the population. Should a minute percentage 
of the population interact, the divergence in the level of benefit and its 
corresponding sensitivity will diminish, thereby decreasing the exertion of 
replication pressure. 

The condition required to guarantee stationarity can be expressed as: 
𝜕𝜕∆𝑥𝑥

𝜕𝜕𝜕𝜕] < 0			(8) 

𝜕𝜕∆𝑥𝑥
𝜕𝜕𝜕𝜕] = W𝑈𝑈# − 𝑈𝑈-X(𝜐𝜐𝜐𝜐 − 2𝑥𝑥𝑥𝑥𝑥𝑥)			(8.1) 

As can be seen from equation 8.1 there are four equilibrium point as 

1. 𝑈𝑈# = 𝑈𝑈- 
2. 𝜐𝜐 = 0 
3. 𝜏𝜏 = 0 
4. 𝑥𝑥 = )

/
, 1, 0 

In the first equilibrium, there is an equal benefit to the player from both strategies. 
This stability is maintained since there are no conditions for switching between 
them. Equity can be determined based on returns or behavior. If players are solely 
interested in returns, then the benefits will be equal only when the material returns 
are identical. In the case of conformist and altruistic players, some individuals will 
continue to use the same strategy, regardless of whether they make a profit or a 
loss, due to the conformist effect. The equality of benefits rests on the players' 
sensitivity to them. In another equilibrium, there is no interaction among players, 
which implies that there will not be any alteration in strategy. 

When people ignore the difference in their utility levels, it inevitably leads to 
ineffective interactions. Furthermore, when society is divided and people opt for 
both strategies with equal frequency, it results in a lack of progress. It is important 
to note that the model can only be considered in equilibrium when the entire 
society chooses a single strategy. 

The sign of the equation 8.1	can be examined for stationarity point. Accordingly, 
one of two conditions must be met for stationarity; 

𝑈𝑈# > 𝑈𝑈- and 𝑥𝑥 > 1/2			(9) 

𝑈𝑈# < 𝑈𝑈- and  𝑥𝑥 < 1/2		(10)  

Equilibria 𝑥𝑥 = 1 and 𝑥𝑥 = 0, where the entire society adopts a single 
strategy, are evolutionarily stable. The 𝑥𝑥 = 1/2 equilibrium is not stationary and 
a small deviation may create basins of attraction. 

When conformism and the behavioral dimension completely dominate 
the utility function for 𝑈𝑈# > 𝑈𝑈- it is required 

(𝜌𝜌 − 𝜑𝜑) + 4 𝜈𝜈#+𝑈𝑈+
+

> (𝜑𝜑 − 𝜌𝜌) + 4 𝜈𝜈-0𝑈𝑈0							(11)
0

 

. The rate of update and utility functions are contingent on the level of x 
within the population. Should a minute percentage of the population interact, the divergence 
in the level of benefit and its corresponding sensitivity will diminish, thereby decreasing the 
exertion of replication pressure.
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In the first equilibrium, there is an equal benefit to the player from both strategies. 
This stability is maintained since there are no conditions for switching between 
them. Equity can be determined based on returns or behavior. If players are solely 
interested in returns, then the benefits will be equal only when the material returns 
are identical. In the case of conformist and altruistic players, some individuals will 
continue to use the same strategy, regardless of whether they make a profit or a 
loss, due to the conformist effect. The equality of benefits rests on the players' 
sensitivity to them. In another equilibrium, there is no interaction among players, 
which implies that there will not be any alteration in strategy. 

When people ignore the difference in their utility levels, it inevitably leads to 
ineffective interactions. Furthermore, when society is divided and people opt for 
both strategies with equal frequency, it results in a lack of progress. It is important 
to note that the model can only be considered in equilibrium when the entire 
society chooses a single strategy. 

The sign of the equation 8.1	can be examined for stationarity point. Accordingly, 
one of two conditions must be met for stationarity; 

𝑈𝑈# > 𝑈𝑈- and 𝑥𝑥 > 1/2			(9) 

𝑈𝑈# < 𝑈𝑈- and  𝑥𝑥 < 1/2		(10)  

Equilibria 𝑥𝑥 = 1 and 𝑥𝑥 = 0, where the entire society adopts a single 
strategy, are evolutionarily stable. The 𝑥𝑥 = 1/2 equilibrium is not stationary and 
a small deviation may create basins of attraction. 

When conformism and the behavioral dimension completely dominate 
the utility function for 𝑈𝑈# > 𝑈𝑈- it is required 
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In the first equilibrium, there is an equal benefit to the player from both strategies. 
This stability is maintained since there are no conditions for switching between 
them. Equity can be determined based on returns or behavior. If players are solely 
interested in returns, then the benefits will be equal only when the material returns 
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continue to use the same strategy, regardless of whether they make a profit or a 
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which implies that there will not be any alteration in strategy. 

When people ignore the difference in their utility levels, it inevitably leads to 
ineffective interactions. Furthermore, when society is divided and people opt for 
both strategies with equal frequency, it results in a lack of progress. It is important 
to note that the model can only be considered in equilibrium when the entire 
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them. Equity can be determined based on returns or behavior. If players are solely 
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sensitivity to them. In another equilibrium, there is no interaction among players, 
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to note that the model can only be considered in equilibrium when the entire 
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(𝜌𝜌 − 𝜑𝜑) + 4 𝜈𝜈#+𝑈𝑈+
+

> (𝜑𝜑 − 𝜌𝜌) + 4 𝜈𝜈-0𝑈𝑈0							(11)
0
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For a strategy to be truly effective, the difference between the adoption rates of strategies x and  
y must be substantial in all circumstances. This difference must be significantly greater than the 
difference between the sensitivity levels of players who have implemented opposing strategies 
that benefit others.

For a strategy to be truly effective, the difference between the adoption rates of 
strategies 𝑥𝑥 and 𝑦𝑦 must be substantial in all circumstances. This difference must 
be significantly greater than the difference between the sensitivity levels of players 
who have implemented opposing strategies that benefit others. 

(2𝜌𝜌 − 2𝜑𝜑) > 4 𝜈𝜈-0𝑈𝑈0 − 4 𝜈𝜈#+𝑈𝑈+
+0

				(12) 

In other words, when conformism is effective	𝑈𝑈# > 𝑈𝑈- can be achieved by the 
significant dominance of players who prefer strategy 𝑥𝑥 under all circumstances. 
Otherwise, even if		𝜌𝜌 > 𝜑𝜑	if the altruism of the players adopting strategy 𝑦𝑦 is more 
than x's, than 	𝑈𝑈# > 𝑈𝑈- can not achieved. This result shows that in cases where 
comfort and behavioral dimensions are dominant, the most important issue for the 
level of benefit is the comfort zone.  

In the case where all benefit depends on the return, the necessary condition for 
	𝑈𝑈# > 𝑈𝑈- is basicly 

𝑤𝑤!
# > 𝑤𝑤!

-					(13) 

This condition achieved only if strategy	𝑥𝑥 is the most profitable strategy in terms 
of returns. When 𝜗𝜗 is ½, the relationship between utilities becomes more complex. 
This time, in order to meet the condition 𝑈𝑈# > 𝑈𝑈- it is required 

• The return of the player who has adopted strategy	𝑥𝑥 is higher than the 
opposite strategy 

• Players who will adopt strategy 𝑥𝑥 under all circumstances are dominant 
in the population  

• This dominance should be greater than the altruism of the players who 
adopt strategy 𝑦𝑦. 

Game theory modeling demonstrates the existence of a non-evolutionary 
equilibrium among evolutionary equilibria. This relationship is illustrated in 
Figure 1. The arrows in the figure indicate the basins of attraction, which visualize 
that if the population is evenly divided, a slight shift in favor of one of the 
strategies will cause the population to move towards one of the two stable 
equilibria. 

Figure 2- Equilibrium and Attraction Basins 
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Source: Prepared by the authors.
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Any other stable equilibrium would not meet these conditions. This, in turn, makes it challenging 
to have a stable investment strategy that is solely dependent on returns. If individuals are unable 
to make rational decisions, players who choose low-return strategies can prevent the highest 
returning strategy from dominating the market.

Players in this case tend to prioritize their own return rather than altruism. They also tend to 
stick to the same strategy even when better options exist. This behavior can prevent a strategy 
that is solely focused on return from dominating society. The advantage of return obtained by 
those who adopt this strategy is offset by the fraction that chooses the opposite strategy. This is 
because of the effect of conformism or inertia, or the altruism of this fraction.

2.3.1. Evolutionary Stability

The equations for investment strategy (Equation 1) and wealth evolution (Equation 4), 
as discussed in Section 2.1, are contingent upon the financial returns yielded by the players. 
Additionally, these equations are influenced by the strategies and wealth of other players, as well 
as the overall economic conditions.

Typically, investors seek out investment strategies that provide the greatest benefits and 
advantages, ultimately leading to a surge in demand for those particular portfolios. Consequently, 
the return on investment also increases In this scenario, the equilibrium is achieved when the 
entire population chooses the same strategy, resulting in the emergence of the investment 
portfolio that offers the highest return, except in a utopian situation where the conformist and 
behavioral dimensions dominate completely.

This is the idea that if a particular strategy becomes widespread in the market, it will become 
a stable strategy with a strong return advantage that makes it difficult for other strategies to 
compete. Therefore, even a small deviation from this equilibrium (such as introducing a small 
fraction of people who have adopted a different strategy) will lead to the elimination of the 
opposing strategy by replicator dynamics.

This section endeavors to provide a mathematical definition of the evolutionary steady state 
referred to earlier. First, we will define the vector that shows the wealth shares of all investors in 
period t as below

Source: Prepared by the authors. 
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𝜅𝜅(𝑡𝑡, 𝑑𝑑! , 𝑊𝑊)				(14)	 

Within this system, the variable 𝑑𝑑! is utilized to denote the current prevailing 
situation or conjuncture that governs the system. Meanwhile, the variable 𝑊𝑊! 
signifies the distribution of wealth during the initial period. 

The dynamic evolution of wealth (equation 4) for each strategy (investment 
portfolio) can be rewritten as follows: 

𝑤𝑤!()
# = ƒW𝑇𝑇𝐷𝐷!# , 𝑤𝑤! , X′!(),"	 𝑊𝑊!()X			(14.1) 

All variables in this equation are assumed as defined in section 2.1. With a little 
arrangement of equation 1 we get investment rule 𝑥𝑥 

Within this system, the variable dt is utilized to denote the current prevailing situation or 
conjuncture that governs the system. Meanwhile, the variable Wt signifies the distribution of 
wealth during the initial period.

The dynamic evolution of wealth (equation 4) for each strategy (investment portfolio) can be 
rewritten as follows:
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Source: Prepared by the authors. 
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highest return, except in a utopian situation where the conformist and behavioral 
dimensions dominate completely. 

This is the idea that if a particular strategy becomes widespread in the market, it 
will become a stable strategy with a strong return advantage that makes it difficult 
for other strategies to compete. Therefore, even a small deviation from this 
equilibrium (such as introducing a small fraction of people who have adopted a 
different strategy) will lead to the elimination of the opposing strategy by 
replicator dynamics. 

This section endeavors to provide a mathematical definition of the evolutionary 
steady state referred to earlier. First, we will define the vector that shows the 
wealth shares of all investors in period t as below 

𝜅𝜅(𝑡𝑡, 𝑑𝑑! , 𝑊𝑊)				(14)	 

Within this system, the variable 𝑑𝑑! is utilized to denote the current prevailing 
situation or conjuncture that governs the system. Meanwhile, the variable 𝑊𝑊! 
signifies the distribution of wealth during the initial period. 

The dynamic evolution of wealth (equation 4) for each strategy (investment 
portfolio) can be rewritten as follows: 

𝑤𝑤!()
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All variables in this equation are assumed as defined in section 2.1. With a little 
arrangement of equation 1 we get investment rule 𝑥𝑥 All variables in this equation are assumed as defined in section 2.1. With a little arrangement of 
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In the context of evolutionary game theory, an investment strategy 𝑥𝑥 ≠ y is said 
to be evolutionarily stable if,for every mutant strategy, there exists a random 
variable 𝑎𝑎(𝑑𝑑) > 0 that satisfy a given condition lim

!→3
𝜅𝜅#(𝑡𝑡, 𝑑𝑑, 𝑤𝑤#) = 1 for every 

𝑤𝑤# ≥ 1 − 𝑎𝑎(𝑑𝑑). This condition stipulates that the utility level of strategy 𝑥𝑥 must 
be greater than or equal to the utility level of the mutant strategy under 
consideration. In other words, the presence of strategy 𝑥𝑥 in a given population 
makes it invulnerable to invasion by any mutant strategy.  

The presence of variable 𝑎𝑎(𝑑𝑑) acts as an entry barrier that hinders the success of 
any new investment approach that seeks to outperform and displace the dominant, 
reliable strategy. Mutant strategies are unable to thrive due to the impact of this 
barrier. The barrier may arise from either a financial return advantage or a moral 
advantage stemming from behavioral or conformist factors. 

Assume that there is distortion in the distribution of wealth shares. Thanks to the 
barrier, long-term behavior will not be affected and the market selection process 
will move towards eliminating the mutant strategy. Ultimately, this will lead to 
the destruction of the mutant strategy. Here, we also need to mention local 
evolutionary stasis. This new stationarity can also be demonstrated 
mathematically.   

Let us define a new random variable	r(d) > 0.If dominant strategy 𝑥𝑥	  meets the 
condition ‖𝑥𝑥(𝑑𝑑) − y(𝑑𝑑)‖ < r(d)	it is considered a local evolutionary stable 
strategy. The concept of local evolutionary stable strategy refers to the strategy 
that is resistant to local mutations. This means that if a population adopts this 
strategy, it is unlikely to be replaced by any other strategy that is slightly different 
and arises due to new information. This stability against mutations is crucial for 
the long-term survival of a stabile strategies and helps to maintain the diversity of 
a population. In short, if points near an equilibrium point tend to move towards 
the equilibrium point over time, the strategy is said to be locally stable.  
Note that, locally stable is slightly different from globally evolutionary stability 
(first case). In a state of global stationarity, a strategy is considered effective if it 
can successfully resist any mutant strategy and cannot be eliminated by any mutant 
strategy. When there is no influence of conformism and behavioral considerations, 
and decisions are solely based on the advantage of returns, the preferred strategy 
for the entire population is the global evolutionary stable equilibrium. 

In a local evolutionary stable equilibrium, small deviations are adjusted to 
maintain balance. However, if the deviations are too large, it's uncertain whether 
the system can return to its original equilibrium point. When conformism and 
behavioral dimension are taken into consideration, the point achieved is called the 

A mathematical representation for evolutionary stasis will be defined through a mutant strategy, 
say y
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to be evolutionarily stable if,for every mutant strategy, there exists a random 
variable 𝑎𝑎(𝑑𝑑) > 0 that satisfy a given condition lim
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𝜅𝜅#(𝑡𝑡, 𝑑𝑑, 𝑤𝑤#) = 1 for every 

𝑤𝑤# ≥ 1 − 𝑎𝑎(𝑑𝑑). This condition stipulates that the utility level of strategy 𝑥𝑥 must 
be greater than or equal to the utility level of the mutant strategy under 
consideration. In other words, the presence of strategy 𝑥𝑥 in a given population 
makes it invulnerable to invasion by any mutant strategy.  

The presence of variable 𝑎𝑎(𝑑𝑑) acts as an entry barrier that hinders the success of 
any new investment approach that seeks to outperform and displace the dominant, 
reliable strategy. Mutant strategies are unable to thrive due to the impact of this 
barrier. The barrier may arise from either a financial return advantage or a moral 
advantage stemming from behavioral or conformist factors. 

Assume that there is distortion in the distribution of wealth shares. Thanks to the 
barrier, long-term behavior will not be affected and the market selection process 
will move towards eliminating the mutant strategy. Ultimately, this will lead to 
the destruction of the mutant strategy. Here, we also need to mention local 
evolutionary stasis. This new stationarity can also be demonstrated 
mathematically.   

Let us define a new random variable	r(d) > 0.If dominant strategy 𝑥𝑥	  meets the 
condition ‖𝑥𝑥(𝑑𝑑) − y(𝑑𝑑)‖ < r(d)	it is considered a local evolutionary stable 
strategy. The concept of local evolutionary stable strategy refers to the strategy 
that is resistant to local mutations. This means that if a population adopts this 
strategy, it is unlikely to be replaced by any other strategy that is slightly different 
and arises due to new information. This stability against mutations is crucial for 
the long-term survival of a stabile strategies and helps to maintain the diversity of 
a population. In short, if points near an equilibrium point tend to move towards 
the equilibrium point over time, the strategy is said to be locally stable.  
Note that, locally stable is slightly different from globally evolutionary stability 
(first case). In a state of global stationarity, a strategy is considered effective if it 
can successfully resist any mutant strategy and cannot be eliminated by any mutant 
strategy. When there is no influence of conformism and behavioral considerations, 
and decisions are solely based on the advantage of returns, the preferred strategy 
for the entire population is the global evolutionary stable equilibrium. 

In a local evolutionary stable equilibrium, small deviations are adjusted to 
maintain balance. However, if the deviations are too large, it's uncertain whether 
the system can return to its original equilibrium point. When conformism and 
behavioral dimension are taken into consideration, the point achieved is called the 
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In the context of evolutionary game theory, an investment strategy 𝑥𝑥 ≠ y is said 
to be evolutionarily stable if,for every mutant strategy, there exists a random 
variable 𝑎𝑎(𝑑𝑑) > 0 that satisfy a given condition lim
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𝜅𝜅#(𝑡𝑡, 𝑑𝑑, 𝑤𝑤#) = 1 for every 

𝑤𝑤# ≥ 1 − 𝑎𝑎(𝑑𝑑). This condition stipulates that the utility level of strategy 𝑥𝑥 must 
be greater than or equal to the utility level of the mutant strategy under 
consideration. In other words, the presence of strategy 𝑥𝑥 in a given population 
makes it invulnerable to invasion by any mutant strategy.  

The presence of variable 𝑎𝑎(𝑑𝑑) acts as an entry barrier that hinders the success of 
any new investment approach that seeks to outperform and displace the dominant, 
reliable strategy. Mutant strategies are unable to thrive due to the impact of this 
barrier. The barrier may arise from either a financial return advantage or a moral 
advantage stemming from behavioral or conformist factors. 

Assume that there is distortion in the distribution of wealth shares. Thanks to the 
barrier, long-term behavior will not be affected and the market selection process 
will move towards eliminating the mutant strategy. Ultimately, this will lead to 
the destruction of the mutant strategy. Here, we also need to mention local 
evolutionary stasis. This new stationarity can also be demonstrated 
mathematically.   

Let us define a new random variable	r(d) > 0.If dominant strategy 𝑥𝑥	  meets the 
condition ‖𝑥𝑥(𝑑𝑑) − y(𝑑𝑑)‖ < r(d)	it is considered a local evolutionary stable 
strategy. The concept of local evolutionary stable strategy refers to the strategy 
that is resistant to local mutations. This means that if a population adopts this 
strategy, it is unlikely to be replaced by any other strategy that is slightly different 
and arises due to new information. This stability against mutations is crucial for 
the long-term survival of a stabile strategies and helps to maintain the diversity of 
a population. In short, if points near an equilibrium point tend to move towards 
the equilibrium point over time, the strategy is said to be locally stable.  
Note that, locally stable is slightly different from globally evolutionary stability 
(first case). In a state of global stationarity, a strategy is considered effective if it 
can successfully resist any mutant strategy and cannot be eliminated by any mutant 
strategy. When there is no influence of conformism and behavioral considerations, 
and decisions are solely based on the advantage of returns, the preferred strategy 
for the entire population is the global evolutionary stable equilibrium. 

In a local evolutionary stable equilibrium, small deviations are adjusted to 
maintain balance. However, if the deviations are too large, it's uncertain whether 
the system can return to its original equilibrium point. When conformism and 
behavioral dimension are taken into consideration, the point achieved is called the 
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In the context of evolutionary game theory, an investment strategy 𝑥𝑥 ≠ y is said 
to be evolutionarily stable if,for every mutant strategy, there exists a random 
variable 𝑎𝑎(𝑑𝑑) > 0 that satisfy a given condition lim

!→3
𝜅𝜅#(𝑡𝑡, 𝑑𝑑, 𝑤𝑤#) = 1 for every 

𝑤𝑤# ≥ 1 − 𝑎𝑎(𝑑𝑑). This condition stipulates that the utility level of strategy 𝑥𝑥 must 
be greater than or equal to the utility level of the mutant strategy under 
consideration. In other words, the presence of strategy 𝑥𝑥 in a given population 
makes it invulnerable to invasion by any mutant strategy.  

The presence of variable 𝑎𝑎(𝑑𝑑) acts as an entry barrier that hinders the success of 
any new investment approach that seeks to outperform and displace the dominant, 
reliable strategy. Mutant strategies are unable to thrive due to the impact of this 
barrier. The barrier may arise from either a financial return advantage or a moral 
advantage stemming from behavioral or conformist factors. 

Assume that there is distortion in the distribution of wealth shares. Thanks to the 
barrier, long-term behavior will not be affected and the market selection process 
will move towards eliminating the mutant strategy. Ultimately, this will lead to 
the destruction of the mutant strategy. Here, we also need to mention local 
evolutionary stasis. This new stationarity can also be demonstrated 
mathematically.   

Let us define a new random variable	r(d) > 0.If dominant strategy 𝑥𝑥	  meets the 
condition ‖𝑥𝑥(𝑑𝑑) − y(𝑑𝑑)‖ < r(d)	it is considered a local evolutionary stable 
strategy. The concept of local evolutionary stable strategy refers to the strategy 
that is resistant to local mutations. This means that if a population adopts this 
strategy, it is unlikely to be replaced by any other strategy that is slightly different 
and arises due to new information. This stability against mutations is crucial for 
the long-term survival of a stabile strategies and helps to maintain the diversity of 
a population. In short, if points near an equilibrium point tend to move towards 
the equilibrium point over time, the strategy is said to be locally stable.  
Note that, locally stable is slightly different from globally evolutionary stability 
(first case). In a state of global stationarity, a strategy is considered effective if it 
can successfully resist any mutant strategy and cannot be eliminated by any mutant 
strategy. When there is no influence of conformism and behavioral considerations, 
and decisions are solely based on the advantage of returns, the preferred strategy 
for the entire population is the global evolutionary stable equilibrium. 

In a local evolutionary stable equilibrium, small deviations are adjusted to 
maintain balance. However, if the deviations are too large, it's uncertain whether 
the system can return to its original equilibrium point. When conformism and 
behavioral dimension are taken into consideration, the point achieved is called the 
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In the context of evolutionary game theory, an investment strategy 𝑥𝑥 ≠ y is said 
to be evolutionarily stable if,for every mutant strategy, there exists a random 
variable 𝑎𝑎(𝑑𝑑) > 0 that satisfy a given condition lim

!→3
𝜅𝜅#(𝑡𝑡, 𝑑𝑑, 𝑤𝑤#) = 1 for every 

𝑤𝑤# ≥ 1 − 𝑎𝑎(𝑑𝑑). This condition stipulates that the utility level of strategy 𝑥𝑥 must 
be greater than or equal to the utility level of the mutant strategy under 
consideration. In other words, the presence of strategy 𝑥𝑥 in a given population 
makes it invulnerable to invasion by any mutant strategy.  

The presence of variable 𝑎𝑎(𝑑𝑑) acts as an entry barrier that hinders the success of 
any new investment approach that seeks to outperform and displace the dominant, 
reliable strategy. Mutant strategies are unable to thrive due to the impact of this 
barrier. The barrier may arise from either a financial return advantage or a moral 
advantage stemming from behavioral or conformist factors. 

Assume that there is distortion in the distribution of wealth shares. Thanks to the 
barrier, long-term behavior will not be affected and the market selection process 
will move towards eliminating the mutant strategy. Ultimately, this will lead to 
the destruction of the mutant strategy. Here, we also need to mention local 
evolutionary stasis. This new stationarity can also be demonstrated 
mathematically.   

Let us define a new random variable	r(d) > 0.If dominant strategy 𝑥𝑥	  meets the 
condition ‖𝑥𝑥(𝑑𝑑) − y(𝑑𝑑)‖ < r(d)	it is considered a local evolutionary stable 
strategy. The concept of local evolutionary stable strategy refers to the strategy 
that is resistant to local mutations. This means that if a population adopts this 
strategy, it is unlikely to be replaced by any other strategy that is slightly different 
and arises due to new information. This stability against mutations is crucial for 
the long-term survival of a stabile strategies and helps to maintain the diversity of 
a population. In short, if points near an equilibrium point tend to move towards 
the equilibrium point over time, the strategy is said to be locally stable.  
Note that, locally stable is slightly different from globally evolutionary stability 
(first case). In a state of global stationarity, a strategy is considered effective if it 
can successfully resist any mutant strategy and cannot be eliminated by any mutant 
strategy. When there is no influence of conformism and behavioral considerations, 
and decisions are solely based on the advantage of returns, the preferred strategy 
for the entire population is the global evolutionary stable equilibrium. 

In a local evolutionary stable equilibrium, small deviations are adjusted to 
maintain balance. However, if the deviations are too large, it's uncertain whether 
the system can return to its original equilibrium point. When conformism and 
behavioral dimension are taken into consideration, the point achieved is called the 

 for every 

𝑥𝑥 = 𝑝𝑝!"Γ!,"#
𝑤𝑤!
#- 		(15) 

A mathematical representation for evolutionary stasis will be defined through a 
mutant strategy, say y. 

𝑥𝑥 =
𝑝𝑝!"Γ!,"

1

𝑤𝑤!
1- 		(16) 

In the context of evolutionary game theory, an investment strategy 𝑥𝑥 ≠ y is said 
to be evolutionarily stable if,for every mutant strategy, there exists a random 
variable 𝑎𝑎(𝑑𝑑) > 0 that satisfy a given condition lim

!→3
𝜅𝜅#(𝑡𝑡, 𝑑𝑑, 𝑤𝑤#) = 1 for every 

𝑤𝑤# ≥ 1 − 𝑎𝑎(𝑑𝑑). This condition stipulates that the utility level of strategy 𝑥𝑥 must 
be greater than or equal to the utility level of the mutant strategy under 
consideration. In other words, the presence of strategy 𝑥𝑥 in a given population 
makes it invulnerable to invasion by any mutant strategy.  

The presence of variable 𝑎𝑎(𝑑𝑑) acts as an entry barrier that hinders the success of 
any new investment approach that seeks to outperform and displace the dominant, 
reliable strategy. Mutant strategies are unable to thrive due to the impact of this 
barrier. The barrier may arise from either a financial return advantage or a moral 
advantage stemming from behavioral or conformist factors. 

Assume that there is distortion in the distribution of wealth shares. Thanks to the 
barrier, long-term behavior will not be affected and the market selection process 
will move towards eliminating the mutant strategy. Ultimately, this will lead to 
the destruction of the mutant strategy. Here, we also need to mention local 
evolutionary stasis. This new stationarity can also be demonstrated 
mathematically.   

Let us define a new random variable	r(d) > 0.If dominant strategy 𝑥𝑥	  meets the 
condition ‖𝑥𝑥(𝑑𝑑) − y(𝑑𝑑)‖ < r(d)	it is considered a local evolutionary stable 
strategy. The concept of local evolutionary stable strategy refers to the strategy 
that is resistant to local mutations. This means that if a population adopts this 
strategy, it is unlikely to be replaced by any other strategy that is slightly different 
and arises due to new information. This stability against mutations is crucial for 
the long-term survival of a stabile strategies and helps to maintain the diversity of 
a population. In short, if points near an equilibrium point tend to move towards 
the equilibrium point over time, the strategy is said to be locally stable.  
Note that, locally stable is slightly different from globally evolutionary stability 
(first case). In a state of global stationarity, a strategy is considered effective if it 
can successfully resist any mutant strategy and cannot be eliminated by any mutant 
strategy. When there is no influence of conformism and behavioral considerations, 
and decisions are solely based on the advantage of returns, the preferred strategy 
for the entire population is the global evolutionary stable equilibrium. 

In a local evolutionary stable equilibrium, small deviations are adjusted to 
maintain balance. However, if the deviations are too large, it's uncertain whether 
the system can return to its original equilibrium point. When conformism and 
behavioral dimension are taken into consideration, the point achieved is called the 

. This condition stipulates that the 
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In the context of evolutionary game theory, an investment strategy 𝑥𝑥 ≠ y is said 
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variable 𝑎𝑎(𝑑𝑑) > 0 that satisfy a given condition lim
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𝑤𝑤# ≥ 1 − 𝑎𝑎(𝑑𝑑). This condition stipulates that the utility level of strategy 𝑥𝑥 must 
be greater than or equal to the utility level of the mutant strategy under 
consideration. In other words, the presence of strategy 𝑥𝑥 in a given population 
makes it invulnerable to invasion by any mutant strategy.  

The presence of variable 𝑎𝑎(𝑑𝑑) acts as an entry barrier that hinders the success of 
any new investment approach that seeks to outperform and displace the dominant, 
reliable strategy. Mutant strategies are unable to thrive due to the impact of this 
barrier. The barrier may arise from either a financial return advantage or a moral 
advantage stemming from behavioral or conformist factors. 

Assume that there is distortion in the distribution of wealth shares. Thanks to the 
barrier, long-term behavior will not be affected and the market selection process 
will move towards eliminating the mutant strategy. Ultimately, this will lead to 
the destruction of the mutant strategy. Here, we also need to mention local 
evolutionary stasis. This new stationarity can also be demonstrated 
mathematically.   

Let us define a new random variable	r(d) > 0.If dominant strategy 𝑥𝑥	  meets the 
condition ‖𝑥𝑥(𝑑𝑑) − y(𝑑𝑑)‖ < r(d)	it is considered a local evolutionary stable 
strategy. The concept of local evolutionary stable strategy refers to the strategy 
that is resistant to local mutations. This means that if a population adopts this 
strategy, it is unlikely to be replaced by any other strategy that is slightly different 
and arises due to new information. This stability against mutations is crucial for 
the long-term survival of a stabile strategies and helps to maintain the diversity of 
a population. In short, if points near an equilibrium point tend to move towards 
the equilibrium point over time, the strategy is said to be locally stable.  
Note that, locally stable is slightly different from globally evolutionary stability 
(first case). In a state of global stationarity, a strategy is considered effective if it 
can successfully resist any mutant strategy and cannot be eliminated by any mutant 
strategy. When there is no influence of conformism and behavioral considerations, 
and decisions are solely based on the advantage of returns, the preferred strategy 
for the entire population is the global evolutionary stable equilibrium. 

In a local evolutionary stable equilibrium, small deviations are adjusted to 
maintain balance. However, if the deviations are too large, it's uncertain whether 
the system can return to its original equilibrium point. When conformism and 
behavioral dimension are taken into consideration, the point achieved is called the 
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In the context of evolutionary game theory, an investment strategy 𝑥𝑥 ≠ y is said 
to be evolutionarily stable if,for every mutant strategy, there exists a random 
variable 𝑎𝑎(𝑑𝑑) > 0 that satisfy a given condition lim

!→3
𝜅𝜅#(𝑡𝑡, 𝑑𝑑, 𝑤𝑤#) = 1 for every 

𝑤𝑤# ≥ 1 − 𝑎𝑎(𝑑𝑑). This condition stipulates that the utility level of strategy 𝑥𝑥 must 
be greater than or equal to the utility level of the mutant strategy under 
consideration. In other words, the presence of strategy 𝑥𝑥 in a given population 
makes it invulnerable to invasion by any mutant strategy.  

The presence of variable 𝑎𝑎(𝑑𝑑) acts as an entry barrier that hinders the success of 
any new investment approach that seeks to outperform and displace the dominant, 
reliable strategy. Mutant strategies are unable to thrive due to the impact of this 
barrier. The barrier may arise from either a financial return advantage or a moral 
advantage stemming from behavioral or conformist factors. 

Assume that there is distortion in the distribution of wealth shares. Thanks to the 
barrier, long-term behavior will not be affected and the market selection process 
will move towards eliminating the mutant strategy. Ultimately, this will lead to 
the destruction of the mutant strategy. Here, we also need to mention local 
evolutionary stasis. This new stationarity can also be demonstrated 
mathematically.   

Let us define a new random variable	r(d) > 0.If dominant strategy 𝑥𝑥	  meets the 
condition ‖𝑥𝑥(𝑑𝑑) − y(𝑑𝑑)‖ < r(d)	it is considered a local evolutionary stable 
strategy. The concept of local evolutionary stable strategy refers to the strategy 
that is resistant to local mutations. This means that if a population adopts this 
strategy, it is unlikely to be replaced by any other strategy that is slightly different 
and arises due to new information. This stability against mutations is crucial for 
the long-term survival of a stabile strategies and helps to maintain the diversity of 
a population. In short, if points near an equilibrium point tend to move towards 
the equilibrium point over time, the strategy is said to be locally stable.  
Note that, locally stable is slightly different from globally evolutionary stability 
(first case). In a state of global stationarity, a strategy is considered effective if it 
can successfully resist any mutant strategy and cannot be eliminated by any mutant 
strategy. When there is no influence of conformism and behavioral considerations, 
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Note that, locally stable is slightly different from globally evolutionary stability (first case). In 
a state of global stationarity, a strategy is considered effective if it can successfully resist any 
mutant strategy and cannot be eliminated by any mutant strategy. When there is no influence 
of conformism and behavioral considerations, and decisions are solely based on the advantage 
of returns, the preferred strategy for the entire population is the global evolutionary stable 
equilibrium.

In a local evolutionary stable equilibrium, small deviations are adjusted to maintain balance. 
However, if the deviations are too large, it’s uncertain whether the system can return to its original 
equilibrium point. When conformism and behavioral dimension are taken into consideration, 
the point achieved is called the local evolutionary stable balance. An example of this equilibrium 
can be found in section 3.4. Although this is sustainable, it’s weaker than global stasis.

2.3.2. Replicator Dynamic Under Non-Random Matching

Individuals tend to engage in conversations and discussions with those who share similar 
viewpoints or are in close proximity. Thus, it becomes crucial to conduct an in-depth analysis of 
non-random associations. If the pairings are not random, the replicator dynamics can be written 
as follows
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Individuals tend to engage in conversations and discussions with those who share 
similar viewpoints or are in close proximity. Thus, it becomes crucial to conduct 
an in-depth analysis of non-random associations. If the pairings are not random, 
the replicator dynamics can be written as follows 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − ∇)(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X					(17) 

When a player picks strategy 𝑥𝑥, the likelihood of them matching with another 
player who also chose that same strategy is not simply 𝑥𝑥, but rather ∇ + (1 − ∇)x. 
In the event of complete intolerance, where ∇= 1, there is a new equilibrium that 
guarantees there will be no change in ∆𝑥𝑥. In other words, when opposite strategies 
are completely intolerant, there is no chance of a match. If the derivative is taken 
to examine the partial effect of intolerance we get 

𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] = −	𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X			(17.1) 

Whether this equation is positive or negative directly depends on the sign of the 
expression W𝑈𝑈# − 𝑈𝑈-X.	 For 𝑈𝑈# > 𝑈𝑈-,  𝜕𝜕∆𝑥𝑥

𝜕𝜕∇] < 0 and for 𝑈𝑈# < 𝑈𝑈- , 𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] >

0. Accordingly, the following determinations can be made: 

• If players find strategy 𝑥𝑥 to be more advantageous, then increasing 
intolerance will result in a decrease in the potential population of strategy 
𝑥𝑥. During matches, if a player adopts strategy 𝑦𝑦, they will likely copy 
strategy 𝑥𝑥 in the next period. However, as intolerance increases, the 
population of strategy y will avoid mating with the population of strategy 
𝑥𝑥, and this will prevent any strategy changes from occurring. 

• If strategy 𝑦𝑦 is the optimal approach, then an increase in intolerance 
would lead to a corresponding increase in the potential population x. 
Conversely, if intolerance rises, the number of individuals who could be 
included in the population x also rises when the best strategy is 𝑦𝑦. 

• If there is complete intolerance, opposing players cannot be matched. 
This means that the probability of player x matching with another x 
becomes 1 according to the formula ∇ + (1 − ∇)𝑥𝑥. 

2.3.3 Non-Return Effect and Equilibrium’s 

If the derivative is taken with respect to 𝜗𝜗 for equation 7.1 we get 

𝜕𝜕(∆𝑥𝑥)
𝜕𝜕𝜕𝜕] = W𝑤𝑤!

- − 𝑤𝑤!
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+
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The following assessments can be made: 

• If strategy 𝑦𝑦 provides the highest payoff, but the x fraction is driven by 
altruism and the dominant fraction always chooses strategy 𝑥𝑥, then the 
partial derivative of the change in the x fraction with respect to 𝜗𝜗 will be 
greater than zero (𝜕𝜕(∆𝑥𝑥) ⁄ 𝜕𝜕𝜕𝜕 > 0). This will increase the weight of non-
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The following assessments can be made: 

• If strategy 𝑦𝑦 provides the highest payoff, but the x fraction is driven by 
altruism and the dominant fraction always chooses strategy 𝑥𝑥, then the 
partial derivative of the change in the x fraction with respect to 𝜗𝜗 will be 
greater than zero (𝜕𝜕(∆𝑥𝑥) ⁄ 𝜕𝜕𝜕𝜕 > 0). This will increase the weight of non-
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to examine the partial effect of intolerance we get 

𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] = −	𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X			(17.1) 

Whether this equation is positive or negative directly depends on the sign of the 
expression W𝑈𝑈# − 𝑈𝑈-X.	 For 𝑈𝑈# > 𝑈𝑈-,  𝜕𝜕∆𝑥𝑥

𝜕𝜕∇] < 0 and for 𝑈𝑈# < 𝑈𝑈- , 𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] >

0. Accordingly, the following determinations can be made: 

• If players find strategy 𝑥𝑥 to be more advantageous, then increasing 
intolerance will result in a decrease in the potential population of strategy 
𝑥𝑥. During matches, if a player adopts strategy 𝑦𝑦, they will likely copy 
strategy 𝑥𝑥 in the next period. However, as intolerance increases, the 
population of strategy y will avoid mating with the population of strategy 
𝑥𝑥, and this will prevent any strategy changes from occurring. 

• If strategy 𝑦𝑦 is the optimal approach, then an increase in intolerance 
would lead to a corresponding increase in the potential population x. 
Conversely, if intolerance rises, the number of individuals who could be 
included in the population x also rises when the best strategy is 𝑦𝑦. 

• If there is complete intolerance, opposing players cannot be matched. 
This means that the probability of player x matching with another x 
becomes 1 according to the formula ∇ + (1 − ∇)𝑥𝑥. 

2.3.3 Non-Return Effect and Equilibrium’s 

If the derivative is taken with respect to 𝜗𝜗 for equation 7.1 we get 

𝜕𝜕(∆𝑥𝑥)
𝜕𝜕𝜕𝜕] = W𝑤𝑤!

- − 𝑤𝑤!
#X − @(2𝜑𝜑 − 2𝜌𝜌) + ?4 𝜈𝜈-0𝑈𝑈0
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+
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The following assessments can be made: 

• If strategy 𝑦𝑦 provides the highest payoff, but the x fraction is driven by 
altruism and the dominant fraction always chooses strategy 𝑥𝑥, then the 
partial derivative of the change in the x fraction with respect to 𝜗𝜗 will be 
greater than zero (𝜕𝜕(∆𝑥𝑥) ⁄ 𝜕𝜕𝜕𝜕 > 0). This will increase the weight of non-

0. Accordingly, the following 
determinations can be made:

If players find strategy x to be more advantageous, then increasing intolerance will result in a 
decrease in the potential population of strategy x. During matches, if a player adopts strategy 
y, they will likely copy strategy x in the next period. However, as intolerance increases, the 
population of strategy y will avoid mating with the population of strategy x, and this will prevent 
any strategy changes from occurring.

If strategy y is the optimal approach, then an increase in intolerance would lead to a corresponding 
increase in the potential population x. Conversely, if intolerance rises, the number of individuals 
who could be included in the population x also rises when the best strategy is y.
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If there is complete intolerance, opposing players cannot be matched. This means that the 
probability of player x matching with another x becomes 1 according to the formula 

local evolutionary stable balance. An example of this equilibrium can be found in 
section 3.4. Although this is sustainable, it's weaker than global stasis. 

2.3.2 Replicator Dynamic Under Non-Random Matching 

Individuals tend to engage in conversations and discussions with those who share 
similar viewpoints or are in close proximity. Thus, it becomes crucial to conduct 
an in-depth analysis of non-random associations. If the pairings are not random, 
the replicator dynamics can be written as follows 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − ∇)(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X					(17) 

When a player picks strategy 𝑥𝑥, the likelihood of them matching with another 
player who also chose that same strategy is not simply 𝑥𝑥, but rather ∇ + (1 − ∇)x. 
In the event of complete intolerance, where ∇= 1, there is a new equilibrium that 
guarantees there will be no change in ∆𝑥𝑥. In other words, when opposite strategies 
are completely intolerant, there is no chance of a match. If the derivative is taken 
to examine the partial effect of intolerance we get 

𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] = −	𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X			(17.1) 

Whether this equation is positive or negative directly depends on the sign of the 
expression W𝑈𝑈# − 𝑈𝑈-X.	 For 𝑈𝑈# > 𝑈𝑈-,  𝜕𝜕∆𝑥𝑥

𝜕𝜕∇] < 0 and for 𝑈𝑈# < 𝑈𝑈- , 𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] >

0. Accordingly, the following determinations can be made: 

• If players find strategy 𝑥𝑥 to be more advantageous, then increasing 
intolerance will result in a decrease in the potential population of strategy 
𝑥𝑥. During matches, if a player adopts strategy 𝑦𝑦, they will likely copy 
strategy 𝑥𝑥 in the next period. However, as intolerance increases, the 
population of strategy y will avoid mating with the population of strategy 
𝑥𝑥, and this will prevent any strategy changes from occurring. 

• If strategy 𝑦𝑦 is the optimal approach, then an increase in intolerance 
would lead to a corresponding increase in the potential population x. 
Conversely, if intolerance rises, the number of individuals who could be 
included in the population x also rises when the best strategy is 𝑦𝑦. 

• If there is complete intolerance, opposing players cannot be matched. 
This means that the probability of player x matching with another x 
becomes 1 according to the formula ∇ + (1 − ∇)𝑥𝑥. 

2.3.3 Non-Return Effect and Equilibrium’s 

If the derivative is taken with respect to 𝜗𝜗 for equation 7.1 we get 

𝜕𝜕(∆𝑥𝑥)
𝜕𝜕𝜕𝜕] = W𝑤𝑤!

- − 𝑤𝑤!
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The following assessments can be made: 

• If strategy 𝑦𝑦 provides the highest payoff, but the x fraction is driven by 
altruism and the dominant fraction always chooses strategy 𝑥𝑥, then the 
partial derivative of the change in the x fraction with respect to 𝜗𝜗 will be 
greater than zero (𝜕𝜕(∆𝑥𝑥) ⁄ 𝜕𝜕𝜕𝜕 > 0). This will increase the weight of non-

2.3.3 Non-Return Effect and Equilibrium’s

If the derivative is taken with respect to 

local evolutionary stable balance. An example of this equilibrium can be found in 
section 3.4. Although this is sustainable, it's weaker than global stasis. 

2.3.2 Replicator Dynamic Under Non-Random Matching 

Individuals tend to engage in conversations and discussions with those who share 
similar viewpoints or are in close proximity. Thus, it becomes crucial to conduct 
an in-depth analysis of non-random associations. If the pairings are not random, 
the replicator dynamics can be written as follows 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − ∇)(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X					(17) 

When a player picks strategy 𝑥𝑥, the likelihood of them matching with another 
player who also chose that same strategy is not simply 𝑥𝑥, but rather ∇ + (1 − ∇)x. 
In the event of complete intolerance, where ∇= 1, there is a new equilibrium that 
guarantees there will be no change in ∆𝑥𝑥. In other words, when opposite strategies 
are completely intolerant, there is no chance of a match. If the derivative is taken 
to examine the partial effect of intolerance we get 

𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] = −	𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X			(17.1) 

Whether this equation is positive or negative directly depends on the sign of the 
expression W𝑈𝑈# − 𝑈𝑈-X.	 For 𝑈𝑈# > 𝑈𝑈-,  𝜕𝜕∆𝑥𝑥

𝜕𝜕∇] < 0 and for 𝑈𝑈# < 𝑈𝑈- , 𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] >

0. Accordingly, the following determinations can be made: 

• If players find strategy 𝑥𝑥 to be more advantageous, then increasing 
intolerance will result in a decrease in the potential population of strategy 
𝑥𝑥. During matches, if a player adopts strategy 𝑦𝑦, they will likely copy 
strategy 𝑥𝑥 in the next period. However, as intolerance increases, the 
population of strategy y will avoid mating with the population of strategy 
𝑥𝑥, and this will prevent any strategy changes from occurring. 

• If strategy 𝑦𝑦 is the optimal approach, then an increase in intolerance 
would lead to a corresponding increase in the potential population x. 
Conversely, if intolerance rises, the number of individuals who could be 
included in the population x also rises when the best strategy is 𝑦𝑦. 

• If there is complete intolerance, opposing players cannot be matched. 
This means that the probability of player x matching with another x 
becomes 1 according to the formula ∇ + (1 − ∇)𝑥𝑥. 

2.3.3 Non-Return Effect and Equilibrium’s 

If the derivative is taken with respect to 𝜗𝜗 for equation 7.1 we get 

𝜕𝜕(∆𝑥𝑥)
𝜕𝜕𝜕𝜕] = W𝑤𝑤!
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The following assessments can be made: 

• If strategy 𝑦𝑦 provides the highest payoff, but the x fraction is driven by 
altruism and the dominant fraction always chooses strategy 𝑥𝑥, then the 
partial derivative of the change in the x fraction with respect to 𝜗𝜗 will be 
greater than zero (𝜕𝜕(∆𝑥𝑥) ⁄ 𝜕𝜕𝜕𝜕 > 0). This will increase the weight of non-

 for equation 7.1 we get

local evolutionary stable balance. An example of this equilibrium can be found in 
section 3.4. Although this is sustainable, it's weaker than global stasis. 

2.3.2 Replicator Dynamic Under Non-Random Matching 

Individuals tend to engage in conversations and discussions with those who share 
similar viewpoints or are in close proximity. Thus, it becomes crucial to conduct 
an in-depth analysis of non-random associations. If the pairings are not random, 
the replicator dynamics can be written as follows 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − ∇)(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X					(17) 

When a player picks strategy 𝑥𝑥, the likelihood of them matching with another 
player who also chose that same strategy is not simply 𝑥𝑥, but rather ∇ + (1 − ∇)x. 
In the event of complete intolerance, where ∇= 1, there is a new equilibrium that 
guarantees there will be no change in ∆𝑥𝑥. In other words, when opposite strategies 
are completely intolerant, there is no chance of a match. If the derivative is taken 
to examine the partial effect of intolerance we get 

𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] = −	𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X			(17.1) 

Whether this equation is positive or negative directly depends on the sign of the 
expression W𝑈𝑈# − 𝑈𝑈-X.	 For 𝑈𝑈# > 𝑈𝑈-,  𝜕𝜕∆𝑥𝑥

𝜕𝜕∇] < 0 and for 𝑈𝑈# < 𝑈𝑈- , 𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] >

0. Accordingly, the following determinations can be made: 

• If players find strategy 𝑥𝑥 to be more advantageous, then increasing 
intolerance will result in a decrease in the potential population of strategy 
𝑥𝑥. During matches, if a player adopts strategy 𝑦𝑦, they will likely copy 
strategy 𝑥𝑥 in the next period. However, as intolerance increases, the 
population of strategy y will avoid mating with the population of strategy 
𝑥𝑥, and this will prevent any strategy changes from occurring. 

• If strategy 𝑦𝑦 is the optimal approach, then an increase in intolerance 
would lead to a corresponding increase in the potential population x. 
Conversely, if intolerance rises, the number of individuals who could be 
included in the population x also rises when the best strategy is 𝑦𝑦. 

• If there is complete intolerance, opposing players cannot be matched. 
This means that the probability of player x matching with another x 
becomes 1 according to the formula ∇ + (1 − ∇)𝑥𝑥. 

2.3.3 Non-Return Effect and Equilibrium’s 

If the derivative is taken with respect to 𝜗𝜗 for equation 7.1 we get 

𝜕𝜕(∆𝑥𝑥)
𝜕𝜕𝜕𝜕] = W𝑤𝑤!

- − 𝑤𝑤!
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The following assessments can be made: 

• If strategy 𝑦𝑦 provides the highest payoff, but the x fraction is driven by 
altruism and the dominant fraction always chooses strategy 𝑥𝑥, then the 
partial derivative of the change in the x fraction with respect to 𝜗𝜗 will be 
greater than zero (𝜕𝜕(∆𝑥𝑥) ⁄ 𝜕𝜕𝜕𝜕 > 0). This will increase the weight of non-

The following assessments can be made:

If strategy y provides the highest payoff, but the x fraction is driven by altruism and the dominant 
fraction always chooses strategy x, then the partial derivative of the change in the x fraction with 
respect to 

local evolutionary stable balance. An example of this equilibrium can be found in 
section 3.4. Although this is sustainable, it's weaker than global stasis. 

2.3.2 Replicator Dynamic Under Non-Random Matching 

Individuals tend to engage in conversations and discussions with those who share 
similar viewpoints or are in close proximity. Thus, it becomes crucial to conduct 
an in-depth analysis of non-random associations. If the pairings are not random, 
the replicator dynamics can be written as follows 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − ∇)(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X					(17) 

When a player picks strategy 𝑥𝑥, the likelihood of them matching with another 
player who also chose that same strategy is not simply 𝑥𝑥, but rather ∇ + (1 − ∇)x. 
In the event of complete intolerance, where ∇= 1, there is a new equilibrium that 
guarantees there will be no change in ∆𝑥𝑥. In other words, when opposite strategies 
are completely intolerant, there is no chance of a match. If the derivative is taken 
to examine the partial effect of intolerance we get 

𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] = −	𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X			(17.1) 

Whether this equation is positive or negative directly depends on the sign of the 
expression W𝑈𝑈# − 𝑈𝑈-X.	 For 𝑈𝑈# > 𝑈𝑈-,  𝜕𝜕∆𝑥𝑥

𝜕𝜕∇] < 0 and for 𝑈𝑈# < 𝑈𝑈- , 𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] >

0. Accordingly, the following determinations can be made: 

• If players find strategy 𝑥𝑥 to be more advantageous, then increasing 
intolerance will result in a decrease in the potential population of strategy 
𝑥𝑥. During matches, if a player adopts strategy 𝑦𝑦, they will likely copy 
strategy 𝑥𝑥 in the next period. However, as intolerance increases, the 
population of strategy y will avoid mating with the population of strategy 
𝑥𝑥, and this will prevent any strategy changes from occurring. 

• If strategy 𝑦𝑦 is the optimal approach, then an increase in intolerance 
would lead to a corresponding increase in the potential population x. 
Conversely, if intolerance rises, the number of individuals who could be 
included in the population x also rises when the best strategy is 𝑦𝑦. 

• If there is complete intolerance, opposing players cannot be matched. 
This means that the probability of player x matching with another x 
becomes 1 according to the formula ∇ + (1 − ∇)𝑥𝑥. 

2.3.3 Non-Return Effect and Equilibrium’s 

If the derivative is taken with respect to 𝜗𝜗 for equation 7.1 we get 

𝜕𝜕(∆𝑥𝑥)
𝜕𝜕𝜕𝜕] = W𝑤𝑤!
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The following assessments can be made: 

• If strategy 𝑦𝑦 provides the highest payoff, but the x fraction is driven by 
altruism and the dominant fraction always chooses strategy 𝑥𝑥, then the 
partial derivative of the change in the x fraction with respect to 𝜗𝜗 will be 
greater than zero (𝜕𝜕(∆𝑥𝑥) ⁄ 𝜕𝜕𝜕𝜕 > 0). This will increase the weight of non-

 will be greater than zero 

local evolutionary stable balance. An example of this equilibrium can be found in 
section 3.4. Although this is sustainable, it's weaker than global stasis. 

2.3.2 Replicator Dynamic Under Non-Random Matching 

Individuals tend to engage in conversations and discussions with those who share 
similar viewpoints or are in close proximity. Thus, it becomes crucial to conduct 
an in-depth analysis of non-random associations. If the pairings are not random, 
the replicator dynamics can be written as follows 

∆𝑥𝑥 = 𝜐𝜐𝜐𝜐(1 − ∇)(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X					(17) 

When a player picks strategy 𝑥𝑥, the likelihood of them matching with another 
player who also chose that same strategy is not simply 𝑥𝑥, but rather ∇ + (1 − ∇)x. 
In the event of complete intolerance, where ∇= 1, there is a new equilibrium that 
guarantees there will be no change in ∆𝑥𝑥. In other words, when opposite strategies 
are completely intolerant, there is no chance of a match. If the derivative is taken 
to examine the partial effect of intolerance we get 

𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] = −	𝜐𝜐𝜐𝜐(1 − 𝑥𝑥)𝜏𝜏W𝑈𝑈# − 𝑈𝑈-X			(17.1) 

Whether this equation is positive or negative directly depends on the sign of the 
expression W𝑈𝑈# − 𝑈𝑈-X.	 For 𝑈𝑈# > 𝑈𝑈-,  𝜕𝜕∆𝑥𝑥

𝜕𝜕∇] < 0 and for 𝑈𝑈# < 𝑈𝑈- , 𝜕𝜕∆𝑥𝑥
𝜕𝜕∇] >

0. Accordingly, the following determinations can be made: 

• If players find strategy 𝑥𝑥 to be more advantageous, then increasing 
intolerance will result in a decrease in the potential population of strategy 
𝑥𝑥. During matches, if a player adopts strategy 𝑦𝑦, they will likely copy 
strategy 𝑥𝑥 in the next period. However, as intolerance increases, the 
population of strategy y will avoid mating with the population of strategy 
𝑥𝑥, and this will prevent any strategy changes from occurring. 

• If strategy 𝑦𝑦 is the optimal approach, then an increase in intolerance 
would lead to a corresponding increase in the potential population x. 
Conversely, if intolerance rises, the number of individuals who could be 
included in the population x also rises when the best strategy is 𝑦𝑦. 

• If there is complete intolerance, opposing players cannot be matched. 
This means that the probability of player x matching with another x 
becomes 1 according to the formula ∇ + (1 − ∇)𝑥𝑥. 

2.3.3 Non-Return Effect and Equilibrium’s 

If the derivative is taken with respect to 𝜗𝜗 for equation 7.1 we get 

𝜕𝜕(∆𝑥𝑥)
𝜕𝜕𝜕𝜕] = W𝑤𝑤!

- − 𝑤𝑤!
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The following assessments can be made: 

• If strategy 𝑦𝑦 provides the highest payoff, but the x fraction is driven by 
altruism and the dominant fraction always chooses strategy 𝑥𝑥, then the 
partial derivative of the change in the x fraction with respect to 𝜗𝜗 will be 
greater than zero (𝜕𝜕(∆𝑥𝑥) ⁄ 𝜕𝜕𝜕𝜕 > 0). This will increase the weight of non- This will increase the weight of non-

return effects in the utility function, leading to more players choosing strategy x. However, non-
return effects like altruism and conformism might prevent some x players from switching to the 
best strategy, y.

Conversely, 

return effects in the utility function, leading to more players choosing 
strategy 𝑥𝑥. However, non-return effects like altruism and conformism 
might prevent some x players from switching to the best strategy, 𝑦𝑦. 

• Conversely, 𝜕𝜕(∆𝑥𝑥)
𝜕𝜕𝜕𝜕] < 0. Increasing the weight of non-return effects 

in the utility function will have a reducing effect on the x fraction. 

 
Hence the stationarity of the equilibria can be summarized as Table 1. 
 
 
 

Table 1: Equilibriums’ 

Equilibrium Is it stable? Explanation 
𝑥𝑥 = 1/2 No. A slight deviation from 

equilibrium in any period will 
provide a return advantage and 
progress throughout the basin of 
attraction. 

𝑥𝑥 = 1 
𝜗𝜗 = 0 

Yes. The yield dominant strategy has 
completely dominated the stock 
market. 

𝑥𝑥 = 1 
𝜗𝜗 = 1 

Not Certain. Non-return effects have full 
weight on the utility function. 
That’s why if ∑ 𝜈𝜈-0𝑈𝑈00 >
∑ 𝜈𝜈#+𝑈𝑈++  than a fraction y 
introduced into play in the next 
period can ensure 𝑈𝑈- > 𝑈𝑈#’i 
sağlayabilir. 

𝑥𝑥 = 1 
𝜗𝜗 = 0,5 

Not Certain. If ∑ 𝜈𝜈-0𝑈𝑈00 > ∑ 𝜈𝜈#+𝑈𝑈++  the 
equilibrium is not stable.  The 
return advantage of the x's is 
balanced by the altruism of the 
y's. In the utopian situation 
where altruism is very dominant,	
𝑈𝑈- > 𝑈𝑈# ,	 despite the return 
advantage. 

𝑥𝑥 = 0 
𝜗𝜗 = 0,5 

Not Certain. Similar to the previous case, if 
the altruism of the x fraction is 
very dominant, the equilibrium 
is not stationary. 

𝑥𝑥 = 0 
𝜗𝜗 = 0 

Yes. When the effect of altruism and 
conformism disappears, all 
benefit is return-oriented and this 
balance is static.  
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might prevent some x players from switching to the best strategy, 𝑦𝑦. 

• Conversely, 𝜕𝜕(∆𝑥𝑥)
𝜕𝜕𝜕𝜕] < 0. Increasing the weight of non-return effects 

in the utility function will have a reducing effect on the x fraction. 

 
Hence the stationarity of the equilibria can be summarized as Table 1. 
 
 
 

Table 1: Equilibriums’ 

Equilibrium Is it stable? Explanation 
𝑥𝑥 = 1/2 No. A slight deviation from 

equilibrium in any period will 
provide a return advantage and 
progress throughout the basin of 
attraction. 

𝑥𝑥 = 1 
𝜗𝜗 = 0 

Yes. The yield dominant strategy has 
completely dominated the stock 
market. 

𝑥𝑥 = 1 
𝜗𝜗 = 1 

Not Certain. Non-return effects have full 
weight on the utility function. 
That’s why if ∑ 𝜈𝜈-0𝑈𝑈00 >
∑ 𝜈𝜈#+𝑈𝑈++  than a fraction y 
introduced into play in the next 
period can ensure 𝑈𝑈- > 𝑈𝑈#’i 
sağlayabilir. 

𝑥𝑥 = 1 
𝜗𝜗 = 0,5 

Not Certain. If ∑ 𝜈𝜈-0𝑈𝑈00 > ∑ 𝜈𝜈#+𝑈𝑈++  the 
equilibrium is not stable.  The 
return advantage of the x's is 
balanced by the altruism of the 
y's. In the utopian situation 
where altruism is very dominant,	
𝑈𝑈- > 𝑈𝑈# ,	 despite the return 
advantage. 

𝑥𝑥 = 0 
𝜗𝜗 = 0,5 

Not Certain. Similar to the previous case, if 
the altruism of the x fraction is 
very dominant, the equilibrium 
is not stationary. 

𝑥𝑥 = 0 
𝜗𝜗 = 0 

Yes. When the effect of altruism and 
conformism disappears, all 
benefit is return-oriented and this 
balance is static.  
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Similar to the previous case, if the altruism of the x fraction is very 
dominant, the equilibrium is not stationary.
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𝜕𝜕𝜕𝜕] < 0. Increasing the weight of non-return effects 

in the utility function will have a reducing effect on the x fraction. 
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Not Certain. Non-return effects have full 
weight on the utility function. 
That’s why if ∑ 𝜈𝜈-0𝑈𝑈00 >
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introduced into play in the next 
period can ensure 𝑈𝑈- > 𝑈𝑈#’i 
sağlayabilir. 

𝑥𝑥 = 1 
𝜗𝜗 = 0,5 

Not Certain. If ∑ 𝜈𝜈-0𝑈𝑈00 > ∑ 𝜈𝜈#+𝑈𝑈++  the 
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return advantage of the x's is 
balanced by the altruism of the 
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where altruism is very dominant,	
𝑈𝑈- > 𝑈𝑈#,	 despite the return 
advantage. 

𝑥𝑥 = 0 
𝜗𝜗 = 0,5 

Not Certain. Similar to the previous case, if 
the altruism of the x fraction is 
very dominant, the equilibrium 
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𝑥𝑥 = 0 
𝜗𝜗 = 1 

Not Certain. If ∑ 𝜈𝜈-0𝑈𝑈00 > ∑ 𝜈𝜈#+𝑈𝑈++ 	the 
equilibrium is stable. On the 
other hand, if the altruism of the 
fraction adopting strategy 𝑥𝑥 is 
dominant, this equilibrium is not 
stationary. 

Source: Prepared by the authors. 
 

When individuals make investment decisions in the stock market, their behavior 
can be influenced by different factors such as conformism, behavioral dimensions, 
and altruism. In the absence of these factors, the utility function focuses solely on 
the returns. In this case, the stable equilibria are 𝑥𝑥 = 0 and 𝑥𝑥 = 1, where the best 
investment strategies dominate the stock market. However, when conformism and 
behavioral dimensions come into play, the return advantage must be greater than 
the effect of altruism and conformism for a stable equilibrium to be reached. When 
conformism and altruism dominate, it becomes challenging to maintain a stable 
balance, which explains why low-return strategies can still survive in evolution. 

3. The Effect of Altruism and Reciprocity Feelings on the Utility 

Function 

When the utility function 𝑈𝑈# is analyzed, it can be concluded that 

• If the utility level of other players increases and if 𝜈𝜈#+ > 0, 𝜗𝜗 > 0	the 
utility level of player x also increases (provided that 𝜋𝜋# remains 
constant). Player x is aware of the utility level of other players. Her utility 
function does not only depend on her own financial payoff. As 𝜗𝜗 or 𝜈𝜈#+ 
increases, the benefit level also increases. 

• If 𝜈𝜈#+ = 0 ,x is only sensitive to his own payoff. In this case, the benefit 
level changes depending on the value of 𝜗𝜗. If 𝜗𝜗 = 0, player x is still 
return-oriented. As 𝜗𝜗 increases, player x begins to care about the 
existence of people who think like her, as well as her financial return. 

• This equation also works in reverse. For instance, if 𝜈𝜈#+ > 0, 𝜗𝜗 > 0 and 
if  ∑ 𝑈𝑈++  decreasing than the benefit level of player x will also decrease, 
provided that 𝜋𝜋# remains constant. 

• If 𝜈𝜈#+ < 0 and 𝜗𝜗 > 0 , a reverse relationship begins between ∑ 𝑈𝑈++  and 
𝑈𝑈#. 

• Unconditional altruism or unconditional anger/selfishness is denoted by 
𝑎𝑎#.	 𝐷𝐷#𝑎𝑎+	characterizes conditional altruism. This condition can be 
summarized as player x's character 𝐷𝐷# and belief about other players' 
opinions of her 𝑎𝑎+. 

• If 𝑎𝑎# = 0 and 𝐷𝐷# has a positive value, player x has an understanding of 
the other person's feelings, thoughts and behaviors towards him. This 
leads to conditional altruism. 

• If 𝐷𝐷# =0, 𝜈𝜈#+ depends solely on 𝑎𝑎#. For negative values of 𝑎𝑎#, player x 
can be said to be unconditionally selfish or spiteful. 

Not Certain.
If 𝑥𝑥 = 0 

𝜗𝜗 = 1 
Not Certain. If ∑ 𝜈𝜈-0𝑈𝑈00 > ∑ 𝜈𝜈#+𝑈𝑈++ 	the 

equilibrium is stable. On the 
other hand, if the altruism of the 
fraction adopting strategy 𝑥𝑥 is 
dominant, this equilibrium is not 
stationary. 

Source: Prepared by the authors. 
 

When individuals make investment decisions in the stock market, their behavior 
can be influenced by different factors such as conformism, behavioral dimensions, 
and altruism. In the absence of these factors, the utility function focuses solely on 
the returns. In this case, the stable equilibria are 𝑥𝑥 = 0 and 𝑥𝑥 = 1, where the best 
investment strategies dominate the stock market. However, when conformism and 
behavioral dimensions come into play, the return advantage must be greater than 
the effect of altruism and conformism for a stable equilibrium to be reached. When 
conformism and altruism dominate, it becomes challenging to maintain a stable 
balance, which explains why low-return strategies can still survive in evolution. 

3. The Effect of Altruism and Reciprocity Feelings on the Utility 

Function 

When the utility function 𝑈𝑈# is analyzed, it can be concluded that 

• If the utility level of other players increases and if 𝜈𝜈#+ > 0, 𝜗𝜗 > 0	the 
utility level of player x also increases (provided that 𝜋𝜋# remains 
constant). Player x is aware of the utility level of other players. Her utility 
function does not only depend on her own financial payoff. As 𝜗𝜗 or 𝜈𝜈#+ 
increases, the benefit level also increases. 

• If 𝜈𝜈#+ = 0 ,x is only sensitive to his own payoff. In this case, the benefit 
level changes depending on the value of 𝜗𝜗. If 𝜗𝜗 = 0, player x is still 
return-oriented. As 𝜗𝜗 increases, player x begins to care about the 
existence of people who think like her, as well as her financial return. 

• This equation also works in reverse. For instance, if 𝜈𝜈#+ > 0, 𝜗𝜗 > 0 and 
if  ∑ 𝑈𝑈++  decreasing than the benefit level of player x will also decrease, 
provided that 𝜋𝜋# remains constant. 

• If 𝜈𝜈#+ < 0 and 𝜗𝜗 > 0 , a reverse relationship begins between ∑ 𝑈𝑈++  and 
𝑈𝑈#. 

• Unconditional altruism or unconditional anger/selfishness is denoted by 
𝑎𝑎#.	 𝐷𝐷#𝑎𝑎+	characterizes conditional altruism. This condition can be 
summarized as player x's character 𝐷𝐷# and belief about other players' 
opinions of her 𝑎𝑎+. 

• If 𝑎𝑎# = 0 and 𝐷𝐷# has a positive value, player x has an understanding of 
the other person's feelings, thoughts and behaviors towards him. This 
leads to conditional altruism. 

• If 𝐷𝐷# =0, 𝜈𝜈#+ depends solely on 𝑎𝑎#. For negative values of 𝑎𝑎#, player x 
can be said to be unconditionally selfish or spiteful. 

 the equilibrium is stable. On the other 
hand, if the altruism of the fraction adopting strategy x is dominant, 
this equilibrium is not stationary.

Source: Prepared by the authors.

When individuals make investment decisions in the stock market, their behavior can be 
influenced by different factors such as conformism, behavioral dimensions, and altruism. In the 
absence of these factors, the utility function focuses solely on the returns. In this case, the stable 
equilibria are x=0 and x=1, where the best investment strategies dominate the stock market. 
However, when conformism and behavioral dimensions come into play, the return advantage 
must be greater than the effect of altruism and conformism for a stable equilibrium to be reached. 
When conformism and altruism dominate, it becomes challenging to maintain a stable balance, 
which explains why low-return strategies can still survive in evolution.

3. The Effect of Altruism and Reciprocity Feelings on the Utility Function

When the utility function Ux is analyzed, it can be concluded that
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Not Certain. If ∑ 𝜈𝜈-0𝑈𝑈00 > ∑ 𝜈𝜈#+𝑈𝑈++ 	the 
equilibrium is stable. On the 
other hand, if the altruism of the 
fraction adopting strategy 𝑥𝑥 is 
dominant, this equilibrium is not 
stationary. 

Source: Prepared by the authors. 
 

When individuals make investment decisions in the stock market, their behavior 
can be influenced by different factors such as conformism, behavioral dimensions, 
and altruism. In the absence of these factors, the utility function focuses solely on 
the returns. In this case, the stable equilibria are 𝑥𝑥 = 0 and 𝑥𝑥 = 1, where the best 
investment strategies dominate the stock market. However, when conformism and 
behavioral dimensions come into play, the return advantage must be greater than 
the effect of altruism and conformism for a stable equilibrium to be reached. When 
conformism and altruism dominate, it becomes challenging to maintain a stable 
balance, which explains why low-return strategies can still survive in evolution. 

3. The Effect of Altruism and Reciprocity Feelings on the Utility 

Function 

When the utility function 𝑈𝑈# is analyzed, it can be concluded that 

• If the utility level of other players increases and if 𝜈𝜈#+ > 0, 𝜗𝜗 > 0	the 
utility level of player x also increases (provided that 𝜋𝜋# remains 
constant). Player x is aware of the utility level of other players. Her utility 
function does not only depend on her own financial payoff. As 𝜗𝜗 or 𝜈𝜈#+ 
increases, the benefit level also increases. 

• If 𝜈𝜈#+ = 0 ,x is only sensitive to his own payoff. In this case, the benefit 
level changes depending on the value of 𝜗𝜗. If 𝜗𝜗 = 0, player x is still 
return-oriented. As 𝜗𝜗 increases, player x begins to care about the 
existence of people who think like her, as well as her financial return. 

• This equation also works in reverse. For instance, if 𝜈𝜈#+ > 0, 𝜗𝜗 > 0 and 
if  ∑ 𝑈𝑈++  decreasing than the benefit level of player x will also decrease, 
provided that 𝜋𝜋# remains constant. 

• If 𝜈𝜈#+ < 0 and 𝜗𝜗 > 0 , a reverse relationship begins between ∑ 𝑈𝑈++  and 
𝑈𝑈#. 

• Unconditional altruism or unconditional anger/selfishness is denoted by 
𝑎𝑎#.	 𝐷𝐷#𝑎𝑎+	characterizes conditional altruism. This condition can be 
summarized as player x's character 𝐷𝐷# and belief about other players' 
opinions of her 𝑎𝑎+. 

• If 𝑎𝑎# = 0 and 𝐷𝐷# has a positive value, player x has an understanding of 
the other person's feelings, thoughts and behaviors towards him. This 
leads to conditional altruism. 

• If 𝐷𝐷# =0, 𝜈𝜈#+ depends solely on 𝑎𝑎#. For negative values of 𝑎𝑎#, player x 
can be said to be unconditionally selfish or spiteful. 

, the utility level of player 
x also increases (provided that 
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𝜗𝜗 = 1 

Not Certain. If ∑ 𝜈𝜈-0𝑈𝑈00 > ∑ 𝜈𝜈#+𝑈𝑈++ 	the 
equilibrium is stable. On the 
other hand, if the altruism of the 
fraction adopting strategy 𝑥𝑥 is 
dominant, this equilibrium is not 
stationary. 

Source: Prepared by the authors. 
 

When individuals make investment decisions in the stock market, their behavior 
can be influenced by different factors such as conformism, behavioral dimensions, 
and altruism. In the absence of these factors, the utility function focuses solely on 
the returns. In this case, the stable equilibria are 𝑥𝑥 = 0 and 𝑥𝑥 = 1, where the best 
investment strategies dominate the stock market. However, when conformism and 
behavioral dimensions come into play, the return advantage must be greater than 
the effect of altruism and conformism for a stable equilibrium to be reached. When 
conformism and altruism dominate, it becomes challenging to maintain a stable 
balance, which explains why low-return strategies can still survive in evolution. 

3. The Effect of Altruism and Reciprocity Feelings on the Utility 

Function 

When the utility function 𝑈𝑈# is analyzed, it can be concluded that 

• If the utility level of other players increases and if 𝜈𝜈#+ > 0, 𝜗𝜗 > 0	the 
utility level of player x also increases (provided that 𝜋𝜋# remains 
constant). Player x is aware of the utility level of other players. Her utility 
function does not only depend on her own financial payoff. As 𝜗𝜗 or 𝜈𝜈#+ 
increases, the benefit level also increases. 

• If 𝜈𝜈#+ = 0 ,x is only sensitive to his own payoff. In this case, the benefit 
level changes depending on the value of 𝜗𝜗. If 𝜗𝜗 = 0, player x is still 
return-oriented. As 𝜗𝜗 increases, player x begins to care about the 
existence of people who think like her, as well as her financial return. 

• This equation also works in reverse. For instance, if 𝜈𝜈#+ > 0, 𝜗𝜗 > 0 and 
if  ∑ 𝑈𝑈++  decreasing than the benefit level of player x will also decrease, 
provided that 𝜋𝜋# remains constant. 

• If 𝜈𝜈#+ < 0 and 𝜗𝜗 > 0 , a reverse relationship begins between ∑ 𝑈𝑈++  and 
𝑈𝑈#. 

• Unconditional altruism or unconditional anger/selfishness is denoted by 
𝑎𝑎#.	 𝐷𝐷#𝑎𝑎+	characterizes conditional altruism. This condition can be 
summarized as player x's character 𝐷𝐷# and belief about other players' 
opinions of her 𝑎𝑎+. 

• If 𝑎𝑎# = 0 and 𝐷𝐷# has a positive value, player x has an understanding of 
the other person's feelings, thoughts and behaviors towards him. This 
leads to conditional altruism. 

• If 𝐷𝐷# =0, 𝜈𝜈#+ depends solely on 𝑎𝑎#. For negative values of 𝑎𝑎#, player x 
can be said to be unconditionally selfish or spiteful. 

 remains constant). Player x is aware of the utility level 
of other players. Her utility function does not only depend on her own financial payoff. As 
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Not Certain. If ∑ 𝜈𝜈-0𝑈𝑈00 > ∑ 𝜈𝜈#+𝑈𝑈++ 	the 
equilibrium is stable. On the 
other hand, if the altruism of the 
fraction adopting strategy 𝑥𝑥 is 
dominant, this equilibrium is not 
stationary. 

Source: Prepared by the authors. 
 

When individuals make investment decisions in the stock market, their behavior 
can be influenced by different factors such as conformism, behavioral dimensions, 
and altruism. In the absence of these factors, the utility function focuses solely on 
the returns. In this case, the stable equilibria are 𝑥𝑥 = 0 and 𝑥𝑥 = 1, where the best 
investment strategies dominate the stock market. However, when conformism and 
behavioral dimensions come into play, the return advantage must be greater than 
the effect of altruism and conformism for a stable equilibrium to be reached. When 
conformism and altruism dominate, it becomes challenging to maintain a stable 
balance, which explains why low-return strategies can still survive in evolution. 

3. The Effect of Altruism and Reciprocity Feelings on the Utility 

Function 

When the utility function 𝑈𝑈# is analyzed, it can be concluded that 

• If the utility level of other players increases and if 𝜈𝜈#+ > 0, 𝜗𝜗 > 0	the 
utility level of player x also increases (provided that 𝜋𝜋# remains 
constant). Player x is aware of the utility level of other players. Her utility 
function does not only depend on her own financial payoff. As 𝜗𝜗 or 𝜈𝜈#+ 
increases, the benefit level also increases. 

• If 𝜈𝜈#+ = 0 ,x is only sensitive to his own payoff. In this case, the benefit 
level changes depending on the value of 𝜗𝜗. If 𝜗𝜗 = 0, player x is still 
return-oriented. As 𝜗𝜗 increases, player x begins to care about the 
existence of people who think like her, as well as her financial return. 

• This equation also works in reverse. For instance, if 𝜈𝜈#+ > 0, 𝜗𝜗 > 0 and 
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opinions of her 𝑎𝑎+. 
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the other person's feelings, thoughts and behaviors towards him. This 
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• If 𝐷𝐷# =0, 𝜈𝜈#+ depends solely on 𝑎𝑎#. For negative values of 𝑎𝑎#, player x 
can be said to be unconditionally selfish or spiteful. 

increases, the benefit level also increases.

•	 If 

𝑥𝑥 = 0 
𝜗𝜗 = 1 

Not Certain. If ∑ 𝜈𝜈-0𝑈𝑈00 > ∑ 𝜈𝜈#+𝑈𝑈++ 	the 
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dominant, this equilibrium is not 
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When individuals make investment decisions in the stock market, their behavior 
can be influenced by different factors such as conformism, behavioral dimensions, 
and altruism. In the absence of these factors, the utility function focuses solely on 
the returns. In this case, the stable equilibria are 𝑥𝑥 = 0 and 𝑥𝑥 = 1, where the best 
investment strategies dominate the stock market. However, when conformism and 
behavioral dimensions come into play, the return advantage must be greater than 
the effect of altruism and conformism for a stable equilibrium to be reached. When 
conformism and altruism dominate, it becomes challenging to maintain a stable 
balance, which explains why low-return strategies can still survive in evolution. 
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Function 
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• If 𝜈𝜈#+ = 0 ,x is only sensitive to his own payoff. In this case, the benefit 
level changes depending on the value of 𝜗𝜗. If 𝜗𝜗 = 0, player x is still 
return-oriented. As 𝜗𝜗 increases, player x begins to care about the 
existence of people who think like her, as well as her financial return. 
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summarized as player x's character 𝐷𝐷# and belief about other players' 
opinions of her 𝑎𝑎+. 

• If 𝑎𝑎# = 0 and 𝐷𝐷# has a positive value, player x has an understanding of 
the other person's feelings, thoughts and behaviors towards him. This 
leads to conditional altruism. 
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fraction adopting strategy 𝑥𝑥 is 
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Source: Prepared by the authors. 
 

When individuals make investment decisions in the stock market, their behavior 
can be influenced by different factors such as conformism, behavioral dimensions, 
and altruism. In the absence of these factors, the utility function focuses solely on 
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The following assessments can be made: 

• If strategy 𝑦𝑦 provides the highest payoff, but the x fraction is driven by 
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partial derivative of the change in the x fraction with respect to 𝜗𝜗 will be 
greater than zero (𝜕𝜕(∆𝑥𝑥) ⁄ 𝜕𝜕𝜕𝜕 > 0). This will increase the weight of non-
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•	 If, • If, 𝑎𝑎# = 1 player x is unconditionally altruistic. In this case, the 
expression 𝜈𝜈#+ will take the maximum value of 1. Therefore, player x 
may care about others' gains as much as her own. 

• If 𝜈𝜈#+ = 𝑎𝑎#	player x's sensitivity to other players' utility levels is directly 
determined by unconditional altruism/selfishness/anger/hatred. 

If player x is an unconditional altruist,	𝑎𝑎# = 1 and 𝜈𝜈#+ = 𝑎𝑎#. Hence, the utility 
function becomes 

𝑈𝑈#(5) = (1 − 𝜗𝜗)𝑤𝑤!
# + ?𝜗𝜗 @(𝜌𝜌 − 𝜑𝜑) + 4 𝑈𝑈+

+
DE		(19) 

and the benefit of the unconditionally selfish player is 

𝑈𝑈#(+) = (1 − 𝜗𝜗)𝑤𝑤!
# + ?𝜗𝜗 @(𝜌𝜌 − 𝜑𝜑) − 4 𝑈𝑈+

+
DE		(20) 

For 𝑈𝑈#(5) > 𝑈𝑈#(+) it is required ∑ 𝑈𝑈++ > 0. The unconditionally altruistic player 
places significant weight on the utility level of other players. If 𝐷𝐷# = 0, that is, if 
player x doesn't care about what others think, we can still talk about pure 
selflessness or selfishness and utility functions will be alike. As 𝐷𝐷# increases the 
importance of player x's belief about what other players think about her becomes 
crucial.  

Let us to compare two different player, 
𝐷𝐷# = 1, 𝑎𝑎+ = −1,	𝜈𝜈#+ = (𝑎𝑎# − 1)/2	and 𝐷𝐷# = 0,	𝜈𝜈#+ = 𝑎𝑎# : 

• If 𝑎𝑎# = −1	(unconditional selfishness), then both 𝜈𝜈#+ are equal. 
• If 𝑎𝑎# = 1	(unconditional altruism) than the second players’	𝜈𝜈#+ is bigger. 

Ceteris paribus her utility will be higher also (if 𝑈𝑈+ > 0). 
• If 𝑎𝑎# = 0.5, the player who does not care about the opinions of others 
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cares about the opinions of others and believes that they have a good 
opinion of her has unconditional altruism. Her benefit level will be higher 
than the player who does not value the opinions of others. 
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believes that there is a good opinion about her will benefit more 

• If 𝑎𝑎# < 0, again, the benefit of the player who gives full importance to 
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For 𝑈𝑈#(5) > 𝑈𝑈#(+) it is required ∑ 𝑈𝑈++ > 0. The unconditionally altruistic player 
places significant weight on the utility level of other players. If 𝐷𝐷# = 0, that is, if 
player x doesn't care about what others think, we can still talk about pure 
selflessness or selfishness and utility functions will be alike. As 𝐷𝐷# increases the 
importance of player x's belief about what other players think about her becomes 
crucial.  

Let us to compare two different player, 
𝐷𝐷# = 1, 𝑎𝑎+ = −1,	𝜈𝜈#+ = (𝑎𝑎# − 1)/2	and 𝐷𝐷# = 0,	𝜈𝜈#+ = 𝑎𝑎# : 

• If 𝑎𝑎# = −1	(unconditional selfishness), then both 𝜈𝜈#+ are equal. 
• If 𝑎𝑎# = 1	(unconditional altruism) than the second players’	𝜈𝜈#+ is bigger. 

Ceteris paribus her utility will be higher also (if 𝑈𝑈+ > 0). 
• If 𝑎𝑎# = 0.5, the player who does not care about the opinions of others 

will benefit more. If player cares about other players' opinions of her, 
sensitivity to the benefits of others will decrease (just because the fact 
that for admitting that other players have a bad opinion of her). 

𝐷𝐷# = 1, 𝑎𝑎+ = 1,	and 𝐷𝐷# = 0 : 
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• If 𝑎𝑎# = −1(unconditional selfishness), then the first players’ utility level 

will be higher (if 𝑈𝑈+ > 0). 
• If 𝑎𝑎# = 0.5, the benefit in the first case will be greater. If the player who 

cares about the opinions of others and believes that they have a good 
opinion of her has unconditional altruism. Her benefit level will be higher 
than the player who does not value the opinions of others. 

• If 𝑎𝑎# > 0, the player who cares about the opinions of other players and 
believes that there is a good opinion about her will benefit more 

• If 𝑎𝑎# < 0, again, the benefit of the player who gives full importance to 
the opinions of other players and thinks that these players' think excellent 
about her (provided that the sum of the benefits of the other players is not 
zero) is greater. 
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If the same analysis is repeated for If the same analysis is repeated for 𝐷𝐷# = 0.5 ,	𝑎𝑎+ = 1 and 𝐷𝐷# = 0.5, 𝑎𝑎+ = −1  
(compare with 𝐷𝐷# = 0 ) 

• For 𝐷𝐷# = 0.5 and 𝑎𝑎+ = 1, if 	𝑎𝑎# = 1	then in both cases 𝜈𝜈#+ will be the 
same. 

• For 	𝐷𝐷# = 0.5 and	𝑎𝑎+ = −1 , if 𝑎𝑎# = 1 then provided that the sum of the 
other players' utility levels is positive, the unconditional altruist's utility 
level will be higher. 

Same analysis can be repeated under the following conditions 

• When comparing	𝐷𝐷# = 1,	𝑎𝑎# = 1	and 𝑎𝑎+ = 1 with 	𝐷𝐷# = 1,	𝑎𝑎# = 0	and	
𝑎𝑎+ = 1 the benefit of the player who attaches importance to other players' 
opinions about herself and believes that these opinions are positive, and 
who is also unconditionally altruistic, will be higher. 

• When comparing	𝐷𝐷# = 1,	𝑎𝑎# = 1	and 𝑎𝑎+ = −1 with 	𝐷𝐷# = 1,	𝑎𝑎# = −1	
and	𝑎𝑎+ = 1 in both cases ν78 = 0 obtained. Unconditional altruism and 
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3.1 Partial Effects of 𝝂𝝂𝒙𝒙𝒙𝒙 
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As can be easily seen, if 

If the same analysis is repeated for 𝐷𝐷# = 0.5 ,	𝑎𝑎+ = 1 and 𝐷𝐷# = 0.5, 𝑎𝑎+ = −1  
(compare with 𝐷𝐷# = 0 ) 

• For 𝐷𝐷# = 0.5 and 𝑎𝑎+ = 1, if 	𝑎𝑎# = 1	then in both cases 𝜈𝜈#+ will be the 
same. 

• For 	𝐷𝐷# = 0.5 and	𝑎𝑎+ = −1 , if 𝑎𝑎# = 1 then provided that the sum of the 
other players' utility levels is positive, the unconditional altruist's utility 
level will be higher. 

Same analysis can be repeated under the following conditions 

• When comparing	𝐷𝐷# = 1,	𝑎𝑎# = 1	and 𝑎𝑎+ = 1 with 	𝐷𝐷# = 1,	𝑎𝑎# = 0	and	
𝑎𝑎+ = 1 the benefit of the player who attaches importance to other players' 
opinions about herself and believes that these opinions are positive, and 
who is also unconditionally altruistic, will be higher. 
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The following two statements hold positive implications. Firstly, an increase in 
the level of unconditional altruism would result in an elevated level of player x's 
sensitivity towards the benefits of other players. Secondly, if player x perceives 
that other players hold a more favorable opinion of her, her sensitivity towards the 
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𝑎𝑎+ = 1 the benefit of the player who attaches importance to other players' 
opinions about herself and believes that these opinions are positive, and 
who is also unconditionally altruistic, will be higher. 

• When comparing	𝐷𝐷# = 1,	𝑎𝑎# = 1	and 𝑎𝑎+ = −1 with 	𝐷𝐷# = 1,	𝑎𝑎# = −1	
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The following two statements hold positive implications. Firstly, an increase in 
the level of unconditional altruism would result in an elevated level of player x's 
sensitivity towards the benefits of other players. Secondly, if player x perceives 
that other players hold a more favorable opinion of her, her sensitivity towards the 
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(compare with 𝐷𝐷# = 0 ) 

• For 𝐷𝐷# = 0.5 and 𝑎𝑎+ = 1, if 	𝑎𝑎# = 1	then in both cases 𝜈𝜈#+ will be the 
same. 

• For 	𝐷𝐷# = 0.5 and	𝑎𝑎+ = −1 , if 𝑎𝑎# = 1 then provided that the sum of the 
other players' utility levels is positive, the unconditional altruist's utility 
level will be higher. 

Same analysis can be repeated under the following conditions 

• When comparing	𝐷𝐷# = 1,	𝑎𝑎# = 1	and 𝑎𝑎+ = 1 with 	𝐷𝐷# = 1,	𝑎𝑎# = 0	and	
𝑎𝑎+ = 1 the benefit of the player who attaches importance to other players' 
opinions about herself and believes that these opinions are positive, and 
who is also unconditionally altruistic, will be higher. 

• When comparing	𝐷𝐷# = 1,	𝑎𝑎# = 1	and 𝑎𝑎+ = −1 with 	𝐷𝐷# = 1,	𝑎𝑎# = −1	
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The following two statements hold positive implications. Firstly, an increase in 
the level of unconditional altruism would result in an elevated level of player x's 
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expression 𝜈𝜈#+ will take the maximum value of 1. Therefore, player x 
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+
DE		(19) 
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As can be easily seen, if 𝜗𝜗 = 0, the effect of conditional or unconditional altruism 

and selfishness disappears. For positive values of 𝜗𝜗	and 𝑈𝑈+, 𝜕𝜕𝑈𝑈! 𝜕𝜕𝜈𝜈!"' > 0. As 
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The following two statements hold positive implications. Firstly, an increase in 
the level of unconditional altruism would result in an elevated level of player x's 
sensitivity towards the benefits of other players. Secondly, if player x perceives 
that other players hold a more favorable opinion of her, her sensitivity towards the 
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The following two statements hold positive implications. Firstly, an increase in the level of 
unconditional altruism would result in an elevated level of player x’s sensitivity towards the 
benefits of other players. Secondly, if player x perceives that other players hold a more favorable 
opinion of her, her sensitivity towards the benefits of other players will also increase. But if player 
x does not care about other players’ opinions about her, then 

benefits of other players will also increase. But if player x does not care about 
other players' opinions about her, then 𝜕𝜕𝑣𝑣#+ 𝑎𝑎+] = 0. In this case, the effect of 
other players' opinions on the utility equation disappear. 

The results demonstrate how altruism and reciprocity impact the utility function. 
If 	𝐷𝐷# = 0, all impact comes from unconditional altruism. If 𝑣𝑣#+ > 0 player x is 
happy with this situation as long as the utility totals of the other players are 
positive. 

 

 
3.3. Equilibriums With Conformism and Behavioral Dimension 

The results can be summarized: 
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benefit from her unconditional altruism. 
The conformist effect must exceed this 
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opinions, player y is 
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reciprocity, utility functions are 
depend on both return and 
conformism 
 

If 𝑥𝑥 > 1/2 this time, the important issue 
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thinks that other players have a negative 
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other players' opinions on the utility equation disappear. 

The results demonstrate how altruism and reciprocity impact the utility function. 
If 	𝐷𝐷# = 0, all impact comes from unconditional altruism. If 𝑣𝑣#+ > 0 player x is 
happy with this situation as long as the utility totals of the other players are 
positive. 

 

 
3.3. Equilibriums With Conformism and Behavioral Dimension 

The results can be summarized: 

Table 2: Behavioral Dimension and Equilibriums’ 

Status Effect to the Stability 
Player x is unconditionally 
altruistic and does not care about 
other players' opinions. 

If 𝑥𝑥 > 1/2 for stability it is required 𝑤𝑤!
# >

𝑤𝑤!
-, 𝜌𝜌 > 𝜑𝜑	and ∑ 𝑈𝑈++ > ∑ 𝑈𝑈0	0 (according 

to 𝜗𝜗)	 
Players x and y are unconditionally 
altruistic and do not care about 
other players’ opinions while 
conformism is full-dominant 

If 𝑥𝑥 > 1/2 for stability it is required	(2𝜌𝜌 −
2𝜑𝜑) > [∑ 𝑈𝑈0 − ∑ 𝑈𝑈++0 ]. Player y gains a 
benefit from her unconditional altruism. 
The conformist effect must exceed this 
benefit in favor of strategy 𝑥𝑥. 

Player x is unconditionally 
altruistic, cares about other players' 
opinions, player y is 
unconditionally selfish, cares 
about other players' opinions 

If 𝑥𝑥 > 1/2 for stability it is required 
(2𝜌𝜌 − 2𝜑𝜑) > [∑ 𝑈𝑈++ − ∑ 𝑈𝑈00 ]. The 
conformist effect in favor of strategy 𝑥𝑥 
must exceed the benefit that player y gains 
from unconditional selfishness. 

Utility functions are only return-
oriented 

If 𝑥𝑥 > 1/2 for stability it is required  𝑤𝑤!
# >

𝑤𝑤!
- . 

Player x and y are unconditionally 
altruistic, utility functions are 
depend on both return and 
conformism  

If 𝑥𝑥 > 1/2 for stability it is required 
W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 − 2𝜑𝜑)]) >

([∑ 𝑈𝑈0 − ∑ 𝑈𝑈++0 ]).	In this case, the payoff 
and conformist advantage of strategy 
𝑥𝑥	should not be balanced by the 
unconditional altruism of player y. 

Player x is unconditionally 
altruistic, player y has a sense of 
reciprocity, utility functions are 
depend on both return and 
conformism 
 

If 𝑥𝑥 > 1/2 this time, the important issue 
for stability is the player's belief in what 
other players think about her, with a sense 
of reciprocity. Stasis is achieved if player y 
thinks that other players have a negative 
opinion of her. Detailed analysis can be 
made with W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 −
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Player x is unconditionally altruistic, cares 
about other players’ opinions, player y is 
unconditionally selfish, cares about other 
players’ opinions

benefits of other players will also increase. But if player x does not care about 
other players' opinions about her, then 𝜕𝜕𝑣𝑣#+ 𝑎𝑎+] = 0. In this case, the effect of 
other players' opinions on the utility equation disappear. 

The results demonstrate how altruism and reciprocity impact the utility function. 
If 	𝐷𝐷# = 0, all impact comes from unconditional altruism. If 𝑣𝑣#+ > 0 player x is 
happy with this situation as long as the utility totals of the other players are 
positive. 

 

 
3.3. Equilibriums With Conformism and Behavioral Dimension 

The results can be summarized: 

Table 2: Behavioral Dimension and Equilibriums’ 

Status Effect to the Stability 
Player x is unconditionally 
altruistic and does not care about 
other players' opinions. 

If 𝑥𝑥 > 1/2 for stability it is required 𝑤𝑤!
# >

𝑤𝑤!
-, 𝜌𝜌 > 𝜑𝜑	and ∑ 𝑈𝑈++ > ∑ 𝑈𝑈0	0 (according 

to 𝜗𝜗)	 
Players x and y are unconditionally 
altruistic and do not care about 
other players’ opinions while 
conformism is full-dominant 

If 𝑥𝑥 > 1/2 for stability it is required	(2𝜌𝜌 −
2𝜑𝜑) > [∑ 𝑈𝑈0 − ∑ 𝑈𝑈++0 ]. Player y gains a 
benefit from her unconditional altruism. 
The conformist effect must exceed this 
benefit in favor of strategy 𝑥𝑥. 

Player x is unconditionally 
altruistic, cares about other players' 
opinions, player y is 
unconditionally selfish, cares 
about other players' opinions 

If 𝑥𝑥 > 1/2 for stability it is required 
(2𝜌𝜌 − 2𝜑𝜑) > [∑ 𝑈𝑈++ − ∑ 𝑈𝑈00 ]. The 
conformist effect in favor of strategy 𝑥𝑥 
must exceed the benefit that player y gains 
from unconditional selfishness. 

Utility functions are only return-
oriented 

If 𝑥𝑥 > 1/2 for stability it is required  𝑤𝑤!
# >

𝑤𝑤!
- . 

Player x and y are unconditionally 
altruistic, utility functions are 
depend on both return and 
conformism  

If 𝑥𝑥 > 1/2 for stability it is required 
W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 − 2𝜑𝜑)]) >

([∑ 𝑈𝑈0 − ∑ 𝑈𝑈++0 ]).	In this case, the payoff 
and conformist advantage of strategy 
𝑥𝑥	should not be balanced by the 
unconditional altruism of player y. 

Player x is unconditionally 
altruistic, player y has a sense of 
reciprocity, utility functions are 
depend on both return and 
conformism 
 

If 𝑥𝑥 > 1/2 this time, the important issue 
for stability is the player's belief in what 
other players think about her, with a sense 
of reciprocity. Stasis is achieved if player y 
thinks that other players have a negative 
opinion of her. Detailed analysis can be 
made with W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 −

Utility functions are only return-oriented

benefits of other players will also increase. But if player x does not care about 
other players' opinions about her, then 𝜕𝜕𝑣𝑣#+ 𝑎𝑎+] = 0. In this case, the effect of 
other players' opinions on the utility equation disappear. 

The results demonstrate how altruism and reciprocity impact the utility function. 
If 	𝐷𝐷# = 0, all impact comes from unconditional altruism. If 𝑣𝑣#+ > 0 player x is 
happy with this situation as long as the utility totals of the other players are 
positive. 

 

 
3.3. Equilibriums With Conformism and Behavioral Dimension 

The results can be summarized: 

Table 2: Behavioral Dimension and Equilibriums’ 

Status Effect to the Stability 
Player x is unconditionally 
altruistic and does not care about 
other players' opinions. 

If 𝑥𝑥 > 1/2 for stability it is required 𝑤𝑤!
# >

𝑤𝑤!
-, 𝜌𝜌 > 𝜑𝜑	and ∑ 𝑈𝑈++ > ∑ 𝑈𝑈0	0 (according 

to 𝜗𝜗)	 
Players x and y are unconditionally 
altruistic and do not care about 
other players’ opinions while 
conformism is full-dominant 

If 𝑥𝑥 > 1/2 for stability it is required	(2𝜌𝜌 −
2𝜑𝜑) > [∑ 𝑈𝑈0 − ∑ 𝑈𝑈++0 ]. Player y gains a 
benefit from her unconditional altruism. 
The conformist effect must exceed this 
benefit in favor of strategy 𝑥𝑥. 

Player x is unconditionally 
altruistic, cares about other players' 
opinions, player y is 
unconditionally selfish, cares 
about other players' opinions 

If 𝑥𝑥 > 1/2 for stability it is required 
(2𝜌𝜌 − 2𝜑𝜑) > [∑ 𝑈𝑈++ − ∑ 𝑈𝑈00 ]. The 
conformist effect in favor of strategy 𝑥𝑥 
must exceed the benefit that player y gains 
from unconditional selfishness. 

Utility functions are only return-
oriented 

If 𝑥𝑥 > 1/2 for stability it is required  𝑤𝑤!
# >

𝑤𝑤!
- . 

Player x and y are unconditionally 
altruistic, utility functions are 
depend on both return and 
conformism  

If 𝑥𝑥 > 1/2 for stability it is required 
W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 − 2𝜑𝜑)]) >

([∑ 𝑈𝑈0 − ∑ 𝑈𝑈++0 ]).	In this case, the payoff 
and conformist advantage of strategy 
𝑥𝑥	should not be balanced by the 
unconditional altruism of player y. 

Player x is unconditionally 
altruistic, player y has a sense of 
reciprocity, utility functions are 
depend on both return and 
conformism 
 

If 𝑥𝑥 > 1/2 this time, the important issue 
for stability is the player's belief in what 
other players think about her, with a sense 
of reciprocity. Stasis is achieved if player y 
thinks that other players have a negative 
opinion of her. Detailed analysis can be 
made with W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 −

Player x and y are unconditionally altruistic, 
utility functions are depend on both return 
and conformism

benefits of other players will also increase. But if player x does not care about 
other players' opinions about her, then 𝜕𝜕𝑣𝑣#+ 𝑎𝑎+] = 0. In this case, the effect of 
other players' opinions on the utility equation disappear. 

The results demonstrate how altruism and reciprocity impact the utility function. 
If 	𝐷𝐷# = 0, all impact comes from unconditional altruism. If 𝑣𝑣#+ > 0 player x is 
happy with this situation as long as the utility totals of the other players are 
positive. 

 

 
3.3. Equilibriums With Conformism and Behavioral Dimension 

The results can be summarized: 

Table 2: Behavioral Dimension and Equilibriums’ 

Status Effect to the Stability 
Player x is unconditionally 
altruistic and does not care about 
other players' opinions. 

If 𝑥𝑥 > 1/2 for stability it is required 𝑤𝑤!
# >

𝑤𝑤!
-, 𝜌𝜌 > 𝜑𝜑	and ∑ 𝑈𝑈++ > ∑ 𝑈𝑈0	0 (according 

to 𝜗𝜗)	 
Players x and y are unconditionally 
altruistic and do not care about 
other players’ opinions while 
conformism is full-dominant 

If 𝑥𝑥 > 1/2 for stability it is required	(2𝜌𝜌 −
2𝜑𝜑) > [∑ 𝑈𝑈0 − ∑ 𝑈𝑈++0 ]. Player y gains a 
benefit from her unconditional altruism. 
The conformist effect must exceed this 
benefit in favor of strategy 𝑥𝑥. 

Player x is unconditionally 
altruistic, cares about other players' 
opinions, player y is 
unconditionally selfish, cares 
about other players' opinions 

If 𝑥𝑥 > 1/2 for stability it is required 
(2𝜌𝜌 − 2𝜑𝜑) > [∑ 𝑈𝑈++ − ∑ 𝑈𝑈00 ]. The 
conformist effect in favor of strategy 𝑥𝑥 
must exceed the benefit that player y gains 
from unconditional selfishness. 

Utility functions are only return-
oriented 

If 𝑥𝑥 > 1/2 for stability it is required  𝑤𝑤!
# >

𝑤𝑤!
- . 

Player x and y are unconditionally 
altruistic, utility functions are 
depend on both return and 
conformism  

If 𝑥𝑥 > 1/2 for stability it is required 
W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 − 2𝜑𝜑)]) >

([∑ 𝑈𝑈0 − ∑ 𝑈𝑈++0 ]).	In this case, the payoff 
and conformist advantage of strategy 
𝑥𝑥	should not be balanced by the 
unconditional altruism of player y. 

Player x is unconditionally 
altruistic, player y has a sense of 
reciprocity, utility functions are 
depend on both return and 
conformism 
 

If 𝑥𝑥 > 1/2 this time, the important issue 
for stability is the player's belief in what 
other players think about her, with a sense 
of reciprocity. Stasis is achieved if player y 
thinks that other players have a negative 
opinion of her. Detailed analysis can be 
made with W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 −

Player x is unconditionally altruistic, player 
y has a sense of reciprocity, utility functions 
are depend on both return and conformism

If 𝑥𝑥 > 1/2 this time, the important issue 
for stability is the player's belief in what 
other players think about her, with a sense 
of reciprocity. Stasis is achieved if player y 
thinks that other players have a negative 
opinion of her. Detailed analysis can be 
made with W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 −

2𝜑𝜑)]) > Ws∑ ((𝐷𝐷-𝑎𝑎0)/1 + 𝐷𝐷-)𝑈𝑈00 −
∑ 𝑈𝑈++ tX. Stationarity cannot be achieved if 
player x's payoff and conformism 
advantage is balanced by y's sense of 
reciprocity. 
 

Player x and y have a sense of 
reciprocity, their utility functions 
depend on both payoff and 
conformism 

If 𝑥𝑥 > 1/2 similar to previous case for 
stability it is required W𝑤𝑤!

# − 𝑤𝑤!
-X +

([(2𝜌𝜌 − 2𝜑𝜑)]) > Ws∑ ((𝐷𝐷-𝑎𝑎0)/1 +0
𝐷𝐷-)𝑈𝑈0 − ∑ ((𝐷𝐷#𝑎𝑎+) 1 +⁄ 𝐷𝐷#)𝑈𝑈++ tX. The 
payoff and conformist advantage should be 
greater than the advantage that the sense of 
reciprocity provides to the y. 

Players x and y have a sense of full 
reciprocity, their utility functions 
depend on both payoff and 
conformism, player x thinks the 
other players' negative opinions 
about her, and y thinks the opposite 
 
 

If 𝑥𝑥 > 1/2 for stability it is required	
W𝑤𝑤!

# − 𝑤𝑤!
-X + (2𝜌𝜌 − 2𝜑𝜑) > ([∑ 𝑈𝑈+ ++

∑ 0,5𝑈𝑈0	0 ]). Player x must have a higher 
payoff and conformist advantage than the 
combined benefits of the other players. If 
we agree that this situation is hard to 
achieve, then we have to say it's almost 
impossible to reach a stable equilibrium 
under the conditions we studied. 

Players are completely conformist 
influence oriented, x is 
unconditionally selfish, y has a 
sense of reciprocity, both players 
fully attach importance to the 
opinions of other players. 

If 𝑥𝑥 > 1/2 for stability it is 
required	([(2𝜌𝜌 − 2𝜑𝜑)]) >
uv∑ 5!

/
𝜈𝜈-0𝑈𝑈00 w + ∑ 0,5𝑈𝑈++ x If most people 

conform and support strategy 𝑥𝑥 in all 
matter, the balance is stable. 

Source: Prepared by the authors. 
 

3.4 A New Replicator Dynamic with Conformism and Behavioral 

Dimension 

We’ve already examined the effect of conformism and behavioral dimension, 𝜗𝜗, 
in the previous section. But now we’ll concentrate on it’s importance in the 
survival of unsuccessful strategies.  

Players update their preferences and thoughts based on two pieces of information: 

Player x and y have a sense of reciprocity, 
their utility functions depend on both payoff 
and conformism

If 𝑥𝑥 > 1/2 this time, the important issue 
for stability is the player's belief in what 
other players think about her, with a sense 
of reciprocity. Stasis is achieved if player y 
thinks that other players have a negative 
opinion of her. Detailed analysis can be 
made with W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 −

2𝜑𝜑)]) > Ws∑ ((𝐷𝐷-𝑎𝑎0)/1 + 𝐷𝐷-)𝑈𝑈00 −
∑ 𝑈𝑈++ tX. Stationarity cannot be achieved if 
player x's payoff and conformism 
advantage is balanced by y's sense of 
reciprocity. 
 

Player x and y have a sense of 
reciprocity, their utility functions 
depend on both payoff and 
conformism 

If 𝑥𝑥 > 1/2 similar to previous case for 
stability it is required W𝑤𝑤!

# − 𝑤𝑤!
-X +

([(2𝜌𝜌 − 2𝜑𝜑)]) > Ws∑ ((𝐷𝐷-𝑎𝑎0)/1 +0
𝐷𝐷-)𝑈𝑈0 − ∑ ((𝐷𝐷#𝑎𝑎+) 1 +⁄ 𝐷𝐷#)𝑈𝑈++ tX. The 
payoff and conformist advantage should be 
greater than the advantage that the sense of 
reciprocity provides to the y. 

Players x and y have a sense of full 
reciprocity, their utility functions 
depend on both payoff and 
conformism, player x thinks the 
other players' negative opinions 
about her, and y thinks the opposite 
 
 

If 𝑥𝑥 > 1/2 for stability it is required	
W𝑤𝑤!

# − 𝑤𝑤!
-X + (2𝜌𝜌 − 2𝜑𝜑) > ([∑ 𝑈𝑈+ ++

∑ 0,5𝑈𝑈0	0 ]). Player x must have a higher 
payoff and conformist advantage than the 
combined benefits of the other players. If 
we agree that this situation is hard to 
achieve, then we have to say it's almost 
impossible to reach a stable equilibrium 
under the conditions we studied. 

Players are completely conformist 
influence oriented, x is 
unconditionally selfish, y has a 
sense of reciprocity, both players 
fully attach importance to the 
opinions of other players. 

If 𝑥𝑥 > 1/2 for stability it is 
required	([(2𝜌𝜌 − 2𝜑𝜑)]) >
uv∑ 5!

/
𝜈𝜈-0𝑈𝑈00 w + ∑ 0,5𝑈𝑈++ x If most people 

conform and support strategy 𝑥𝑥 in all 
matter, the balance is stable. 

Source: Prepared by the authors. 
 

3.4 A New Replicator Dynamic with Conformism and Behavioral 

Dimension 

We’ve already examined the effect of conformism and behavioral dimension, 𝜗𝜗, 
in the previous section. But now we’ll concentrate on it’s importance in the 
survival of unsuccessful strategies.  

Players update their preferences and thoughts based on two pieces of information: 

Players x and y have a sense of full 
reciprocity, their utility functions depend on 
both payoff and conformism, player x thinks 
the other players’ negative opinions about 
her, and y thinks the opposite

If 𝑥𝑥 > 1/2 this time, the important issue 
for stability is the player's belief in what 
other players think about her, with a sense 
of reciprocity. Stasis is achieved if player y 
thinks that other players have a negative 
opinion of her. Detailed analysis can be 
made with W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 −

2𝜑𝜑)]) > Ws∑ ((𝐷𝐷-𝑎𝑎0)/1 + 𝐷𝐷-)𝑈𝑈00 −
∑ 𝑈𝑈++ tX. Stationarity cannot be achieved if 
player x's payoff and conformism 
advantage is balanced by y's sense of 
reciprocity. 
 

Player x and y have a sense of 
reciprocity, their utility functions 
depend on both payoff and 
conformism 

If 𝑥𝑥 > 1/2 similar to previous case for 
stability it is required W𝑤𝑤!

# − 𝑤𝑤!
-X +

([(2𝜌𝜌 − 2𝜑𝜑)]) > Ws∑ ((𝐷𝐷-𝑎𝑎0)/1 +0
𝐷𝐷-)𝑈𝑈0 − ∑ ((𝐷𝐷#𝑎𝑎+) 1 +⁄ 𝐷𝐷#)𝑈𝑈++ tX. The 
payoff and conformist advantage should be 
greater than the advantage that the sense of 
reciprocity provides to the y. 

Players x and y have a sense of full 
reciprocity, their utility functions 
depend on both payoff and 
conformism, player x thinks the 
other players' negative opinions 
about her, and y thinks the opposite 
 
 

If 𝑥𝑥 > 1/2 for stability it is required	
W𝑤𝑤!

# − 𝑤𝑤!
-X + (2𝜌𝜌 − 2𝜑𝜑) > ([∑ 𝑈𝑈+ ++

∑ 0,5𝑈𝑈0	0 ]). Player x must have a higher 
payoff and conformist advantage than the 
combined benefits of the other players. If 
we agree that this situation is hard to 
achieve, then we have to say it's almost 
impossible to reach a stable equilibrium 
under the conditions we studied. 

Players are completely conformist 
influence oriented, x is 
unconditionally selfish, y has a 
sense of reciprocity, both players 
fully attach importance to the 
opinions of other players. 

If 𝑥𝑥 > 1/2 for stability it is 
required	([(2𝜌𝜌 − 2𝜑𝜑)]) >
uv∑ 5!

/
𝜈𝜈-0𝑈𝑈00 w + ∑ 0,5𝑈𝑈++ x If most people 

conform and support strategy 𝑥𝑥 in all 
matter, the balance is stable. 

Source: Prepared by the authors. 
 

3.4 A New Replicator Dynamic with Conformism and Behavioral 

Dimension 

We’ve already examined the effect of conformism and behavioral dimension, 𝜗𝜗, 
in the previous section. But now we’ll concentrate on it’s importance in the 
survival of unsuccessful strategies.  

Players update their preferences and thoughts based on two pieces of information: 
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Players are completely conformist influence 
oriented, x is unconditionally selfish, y has a 
sense of reciprocity, both players fully attach 
importance to the opinions of other players.

If 𝑥𝑥 > 1/2 this time, the important issue 
for stability is the player's belief in what 
other players think about her, with a sense 
of reciprocity. Stasis is achieved if player y 
thinks that other players have a negative 
opinion of her. Detailed analysis can be 
made with W𝑤𝑤!

# − 𝑤𝑤!
-X + ([(2𝜌𝜌 −

2𝜑𝜑)]) > Ws∑ ((𝐷𝐷-𝑎𝑎0)/1 + 𝐷𝐷-)𝑈𝑈00 −
∑ 𝑈𝑈++ tX. Stationarity cannot be achieved if 
player x's payoff and conformism 
advantage is balanced by y's sense of 
reciprocity. 
 

Player x and y have a sense of 
reciprocity, their utility functions 
depend on both payoff and 
conformism 

If 𝑥𝑥 > 1/2 similar to previous case for 
stability it is required W𝑤𝑤!

# − 𝑤𝑤!
-X +

([(2𝜌𝜌 − 2𝜑𝜑)]) > Ws∑ ((𝐷𝐷-𝑎𝑎0)/1 +0
𝐷𝐷-)𝑈𝑈0 − ∑ ((𝐷𝐷#𝑎𝑎+) 1 +⁄ 𝐷𝐷#)𝑈𝑈++ tX. The 
payoff and conformist advantage should be 
greater than the advantage that the sense of 
reciprocity provides to the y. 

Players x and y have a sense of full 
reciprocity, their utility functions 
depend on both payoff and 
conformism, player x thinks the 
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Here 𝑟𝑟#	and 𝑟𝑟1 typify the amount of agents who select strategies 𝑥𝑥 and 𝑦𝑦 
respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
arbitrary amount, making the model easier to understand. The compliance 
coefficient determines whether it is more beneficial to change strategies or stick 
with the it according to interactions. This decision is based on the return-oriented 
nature	(1 − 𝜗𝜗) or the conformist and non-return effect (𝜗𝜗).	𝜁𝜁	is the fraction that 
can not be affected by non-return dimensions. 
While 𝜂𝜂 represent the fraction that prefer strategy 𝑥𝑥 with non-return motives, 
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The probability of a player with strategy x matching a player with the opposite 
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difference between return and non-return effects. 
 
The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
adheres to with probability 𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X. According to equation 26, there are four 
equilibria as 𝜂𝜂 = 0, 𝛽𝛽 = 0, 𝜉𝜉 = 0 and	𝑟𝑟# = 𝑟𝑟-. Necessary condition for the last 
equilibrim can be written as 

𝜗𝜗(𝜂𝜂 − 𝜁𝜁)
1 − 𝜗𝜗] = 𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
#(𝜂𝜂)				(26.1)	 

The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
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The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
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Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
as the payoff advantage of the opposite strategy does not exceed  
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unlikely.	𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X	shows the speed of spread. Here 𝜉𝜉 is the sensitivity to the 
difference between return and non-return effects. 
 
The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
adheres to with probability 𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X. According to equation 26, there are four 
equilibria as 𝜂𝜂 = 0, 𝛽𝛽 = 0, 𝜉𝜉 = 0 and	𝑟𝑟# = 𝑟𝑟-. Necessary condition for the last 
equilibrim can be written as 
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The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
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Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
as the payoff advantage of the opposite strategy does not exceed  
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adheres to with probability 𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X. According to equation 26, there are four 
equilibria as 𝜂𝜂 = 0, 𝛽𝛽 = 0, 𝜉𝜉 = 0 and	𝑟𝑟# = 𝑟𝑟-. Necessary condition for the last 
equilibrim can be written as 

𝜗𝜗(𝜂𝜂 − 𝜁𝜁)
1 − 𝜗𝜗] = 𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
#(𝜂𝜂)				(26.1)	 

The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
stable, the derivative of the replicator dynamics with respect to it must be negative. 
To achieve this, the following inequality has to be met. 

𝜗𝜗 < (1 − 𝜗𝜗) ~
𝜕𝜕𝑤𝑤!

-(𝜂𝜂)
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑤𝑤!
#(𝜂𝜂)
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Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
as the payoff advantage of the opposite strategy does not exceed  

The probability of a player with strategy x matching a player with the opposite strategy is shown 
by 

as 𝜂𝜂. Now, we’ll derive a new replicator dynamic. But first, non-return effects 
need to be rewrited. 
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Here 𝑟𝑟#	and 𝑟𝑟1 typify the amount of agents who select strategies 𝑥𝑥 and 𝑦𝑦 
respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
arbitrary amount, making the model easier to understand. The compliance 
coefficient determines whether it is more beneficial to change strategies or stick 
with the it according to interactions. This decision is based on the return-oriented 
nature	(1 − 𝜗𝜗) or the conformist and non-return effect (𝜗𝜗).	𝜁𝜁	is the fraction that 
can not be affected by non-return dimensions. 
While 𝜂𝜂 represent the fraction that prefer strategy 𝑥𝑥 with non-return motives, 
𝑤𝑤!
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-(𝜂𝜂) show the yields of the strategies 𝑥𝑥 and 𝑦𝑦 respectively. Players 
can update their thoughts and preferences at any time. We will use the replicator 
dynamics from the base model to analyze how many people use strategy 𝑥𝑥 with 
non-return motives over time. 

∆𝜂𝜂 = 𝜂𝜂!() − 𝜂𝜂 = 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂)𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X			(26) 
The probability of a player with strategy x matching a player with the opposite 
strategy is shown by	 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂).	 When	 𝜂𝜂	 has extreme values, this match is 
unlikely.	𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X	shows the speed of spread. Here 𝜉𝜉 is the sensitivity to the 
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The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
stable, the derivative of the replicator dynamics with respect to it must be negative. 
To achieve this, the following inequality has to be met. 

𝜗𝜗 < (1 − 𝜗𝜗) ~
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Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
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Here 𝑟𝑟#	and 𝑟𝑟1 typify the amount of agents who select strategies 𝑥𝑥 and 𝑦𝑦 
respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
arbitrary amount, making the model easier to understand. The compliance 
coefficient determines whether it is more beneficial to change strategies or stick 
with the it according to interactions. This decision is based on the return-oriented 
nature	(1 − 𝜗𝜗) or the conformist and non-return effect (𝜗𝜗).	𝜁𝜁	is the fraction that 
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strategy is shown by	 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂).	 When	 𝜂𝜂	 has extreme values, this match is 
unlikely.	𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X	shows the speed of spread. Here 𝜉𝜉 is the sensitivity to the 
difference between return and non-return effects. 
 
The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
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The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
stable, the derivative of the replicator dynamics with respect to it must be negative. 
To achieve this, the following inequality has to be met. 
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Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
as the payoff advantage of the opposite strategy does not exceed  

 has extreme values, this match is unlikely. 

as 𝜂𝜂. Now, we’ll derive a new replicator dynamic. But first, non-return effects 
need to be rewrited. 

													𝑟𝑟# = 1
2] s𝜗𝜗(𝜂𝜂 − 𝜁𝜁) + (1 − 𝜗𝜗)(𝑤𝑤!

#(𝜂𝜂) 	− 𝑤𝑤!
-(𝜂𝜂))t			(24)	 

                           𝑟𝑟1 = 1
2] s𝜗𝜗(𝜁𝜁 − 𝜂𝜂) + (1 − 𝜗𝜗)(𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
-(𝜂𝜂))t		(25) 

Here 𝑟𝑟#	and 𝑟𝑟1 typify the amount of agents who select strategies 𝑥𝑥 and 𝑦𝑦 
respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
arbitrary amount, making the model easier to understand. The compliance 
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can update their thoughts and preferences at any time. We will use the replicator 
dynamics from the base model to analyze how many people use strategy 𝑥𝑥 with 
non-return motives over time. 
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strategy is shown by	 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂).	 When	 𝜂𝜂	 has extreme values, this match is 
unlikely.	𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X	shows the speed of spread. Here 𝜉𝜉 is the sensitivity to the 
difference between return and non-return effects. 
 
The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
adheres to with probability 𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X. According to equation 26, there are four 
equilibria as 𝜂𝜂 = 0, 𝛽𝛽 = 0, 𝜉𝜉 = 0 and	𝑟𝑟# = 𝑟𝑟-. Necessary condition for the last 
equilibrim can be written as 
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The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
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To achieve this, the following inequality has to be met. 
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Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  
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respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
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with the it according to interactions. This decision is based on the return-oriented 
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The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
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Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
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The model involving the non-return effect can be summarized. The player who prefers strategy x 
through some non-return aspect, changes the strategy she adheres to with probability 
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The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
adheres to with probability 𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X. According to equation 26, there are four 
equilibria as 𝜂𝜂 = 0, 𝛽𝛽 = 0, 𝜉𝜉 = 0 and	𝑟𝑟# = 𝑟𝑟-. Necessary condition for the last 
equilibrim can be written as 
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The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
stable, the derivative of the replicator dynamics with respect to it must be negative. 
To achieve this, the following inequality has to be met. 

𝜗𝜗 < (1 − 𝜗𝜗) ~
𝜕𝜕𝑤𝑤!

-(𝜂𝜂)
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑤𝑤!
#(𝜂𝜂)

𝜕𝜕𝜕𝜕 �				(26.2) 

Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
as the payoff advantage of the opposite strategy does not exceed  

. 
According to equation 26, there are four equilibria as 

as 𝜂𝜂. Now, we’ll derive a new replicator dynamic. But first, non-return effects 
need to be rewrited. 

													𝑟𝑟# = 1
2] s𝜗𝜗(𝜂𝜂 − 𝜁𝜁) + (1 − 𝜗𝜗)(𝑤𝑤!

#(𝜂𝜂) 	− 𝑤𝑤!
-(𝜂𝜂))t			(24)	 

                           𝑟𝑟1 = 1
2] s𝜗𝜗(𝜁𝜁 − 𝜂𝜂) + (1 − 𝜗𝜗)(𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
-(𝜂𝜂))t		(25) 

Here 𝑟𝑟#	and 𝑟𝑟1 typify the amount of agents who select strategies 𝑥𝑥 and 𝑦𝑦 
respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
arbitrary amount, making the model easier to understand. The compliance 
coefficient determines whether it is more beneficial to change strategies or stick 
with the it according to interactions. This decision is based on the return-oriented 
nature	(1 − 𝜗𝜗) or the conformist and non-return effect (𝜗𝜗).	𝜁𝜁	is the fraction that 
can not be affected by non-return dimensions. 
While 𝜂𝜂 represent the fraction that prefer strategy 𝑥𝑥 with non-return motives, 
𝑤𝑤!
#(𝜂𝜂) and 𝑤𝑤!

-(𝜂𝜂) show the yields of the strategies 𝑥𝑥 and 𝑦𝑦 respectively. Players 
can update their thoughts and preferences at any time. We will use the replicator 
dynamics from the base model to analyze how many people use strategy 𝑥𝑥 with 
non-return motives over time. 

∆𝜂𝜂 = 𝜂𝜂!() − 𝜂𝜂 = 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂)𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X			(26) 
The probability of a player with strategy x matching a player with the opposite 
strategy is shown by	 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂).	 When	 𝜂𝜂	 has extreme values, this match is 
unlikely.	𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X	shows the speed of spread. Here 𝜉𝜉 is the sensitivity to the 
difference between return and non-return effects. 
 
The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
adheres to with probability 𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X. According to equation 26, there are four 
equilibria as 𝜂𝜂 = 0, 𝛽𝛽 = 0, 𝜉𝜉 = 0 and	𝑟𝑟# = 𝑟𝑟-. Necessary condition for the last 
equilibrim can be written as 

𝜗𝜗(𝜂𝜂 − 𝜁𝜁)
1 − 𝜗𝜗] = 𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
#(𝜂𝜂)				(26.1)	 

The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
stable, the derivative of the replicator dynamics with respect to it must be negative. 
To achieve this, the following inequality has to be met. 

𝜗𝜗 < (1 − 𝜗𝜗) ~
𝜕𝜕𝑤𝑤!

-(𝜂𝜂)
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑤𝑤!
#(𝜂𝜂)

𝜕𝜕𝜕𝜕 �				(26.2) 

Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
as the payoff advantage of the opposite strategy does not exceed  

 Necessary 
condition for the last equilibrim can be written as

as 𝜂𝜂. Now, we’ll derive a new replicator dynamic. But first, non-return effects 
need to be rewrited. 

													𝑟𝑟# = 1
2] s𝜗𝜗(𝜂𝜂 − 𝜁𝜁) + (1 − 𝜗𝜗)(𝑤𝑤!

#(𝜂𝜂) 	− 𝑤𝑤!
-(𝜂𝜂))t			(24)	 

                           𝑟𝑟1 = 1
2] s𝜗𝜗(𝜁𝜁 − 𝜂𝜂) + (1 − 𝜗𝜗)(𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
-(𝜂𝜂))t		(25) 

Here 𝑟𝑟#	and 𝑟𝑟1 typify the amount of agents who select strategies 𝑥𝑥 and 𝑦𝑦 
respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
arbitrary amount, making the model easier to understand. The compliance 
coefficient determines whether it is more beneficial to change strategies or stick 
with the it according to interactions. This decision is based on the return-oriented 
nature	(1 − 𝜗𝜗) or the conformist and non-return effect (𝜗𝜗).	𝜁𝜁	is the fraction that 
can not be affected by non-return dimensions. 
While 𝜂𝜂 represent the fraction that prefer strategy 𝑥𝑥 with non-return motives, 
𝑤𝑤!
#(𝜂𝜂) and 𝑤𝑤!

-(𝜂𝜂) show the yields of the strategies 𝑥𝑥 and 𝑦𝑦 respectively. Players 
can update their thoughts and preferences at any time. We will use the replicator 
dynamics from the base model to analyze how many people use strategy 𝑥𝑥 with 
non-return motives over time. 

∆𝜂𝜂 = 𝜂𝜂!() − 𝜂𝜂 = 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂)𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X			(26) 
The probability of a player with strategy x matching a player with the opposite 
strategy is shown by	 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂).	 When	 𝜂𝜂	 has extreme values, this match is 
unlikely.	𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X	shows the speed of spread. Here 𝜉𝜉 is the sensitivity to the 
difference between return and non-return effects. 
 
The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
adheres to with probability 𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X. According to equation 26, there are four 
equilibria as 𝜂𝜂 = 0, 𝛽𝛽 = 0, 𝜉𝜉 = 0 and	𝑟𝑟# = 𝑟𝑟-. Necessary condition for the last 
equilibrim can be written as 

𝜗𝜗(𝜂𝜂 − 𝜁𝜁)
1 − 𝜗𝜗] = 𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
#(𝜂𝜂)				(26.1)	 

The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
stable, the derivative of the replicator dynamics with respect to it must be negative. 
To achieve this, the following inequality has to be met. 

𝜗𝜗 < (1 − 𝜗𝜗) ~
𝜕𝜕𝑤𝑤!

-(𝜂𝜂)
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑤𝑤!
#(𝜂𝜂)

𝜕𝜕𝜕𝜕 �				(26.2) 

Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
as the payoff advantage of the opposite strategy does not exceed  

The equation is satisfied by as 𝜂𝜂. Now, we’ll derive a new replicator dynamic. But first, non-return effects 
need to be rewrited. 

													𝑟𝑟# = 1
2] s𝜗𝜗(𝜂𝜂 − 𝜁𝜁) + (1 − 𝜗𝜗)(𝑤𝑤!

#(𝜂𝜂) 	− 𝑤𝑤!
-(𝜂𝜂))t			(24)	 

                           𝑟𝑟1 = 1
2] s𝜗𝜗(𝜁𝜁 − 𝜂𝜂) + (1 − 𝜗𝜗)(𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
-(𝜂𝜂))t		(25) 

Here 𝑟𝑟#	and 𝑟𝑟1 typify the amount of agents who select strategies 𝑥𝑥 and 𝑦𝑦 
respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
arbitrary amount, making the model easier to understand. The compliance 
coefficient determines whether it is more beneficial to change strategies or stick 
with the it according to interactions. This decision is based on the return-oriented 
nature	(1 − 𝜗𝜗) or the conformist and non-return effect (𝜗𝜗).	𝜁𝜁	is the fraction that 
can not be affected by non-return dimensions. 
While 𝜂𝜂 represent the fraction that prefer strategy 𝑥𝑥 with non-return motives, 
𝑤𝑤!
#(𝜂𝜂) and 𝑤𝑤!

-(𝜂𝜂) show the yields of the strategies 𝑥𝑥 and 𝑦𝑦 respectively. Players 
can update their thoughts and preferences at any time. We will use the replicator 
dynamics from the base model to analyze how many people use strategy 𝑥𝑥 with 
non-return motives over time. 

∆𝜂𝜂 = 𝜂𝜂!() − 𝜂𝜂 = 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂)𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X			(26) 
The probability of a player with strategy x matching a player with the opposite 
strategy is shown by	 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂).	 When	 𝜂𝜂	 has extreme values, this match is 
unlikely.	𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X	shows the speed of spread. Here 𝜉𝜉 is the sensitivity to the 
difference between return and non-return effects. 
 
The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
adheres to with probability 𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X. According to equation 26, there are four 
equilibria as 𝜂𝜂 = 0, 𝛽𝛽 = 0, 𝜉𝜉 = 0 and	𝑟𝑟# = 𝑟𝑟-. Necessary condition for the last 
equilibrim can be written as 

𝜗𝜗(𝜂𝜂 − 𝜁𝜁)
1 − 𝜗𝜗] = 𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
#(𝜂𝜂)				(26.1)	 

The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
stable, the derivative of the replicator dynamics with respect to it must be negative. 
To achieve this, the following inequality has to be met. 

𝜗𝜗 < (1 − 𝜗𝜗) ~
𝜕𝜕𝑤𝑤!

-(𝜂𝜂)
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑤𝑤!
#(𝜂𝜂)

𝜕𝜕𝜕𝜕 �				(26.2) 

Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
as the payoff advantage of the opposite strategy does not exceed  

, which represents the evolutionary steady state. The evolutionary 
stationary as 𝜂𝜂. Now, we’ll derive a new replicator dynamic. But first, non-return effects 

need to be rewrited. 

													𝑟𝑟# = 1
2] s𝜗𝜗(𝜂𝜂 − 𝜁𝜁) + (1 − 𝜗𝜗)(𝑤𝑤!

#(𝜂𝜂) 	− 𝑤𝑤!
-(𝜂𝜂))t			(24)	 

                           𝑟𝑟1 = 1
2] s𝜗𝜗(𝜁𝜁 − 𝜂𝜂) + (1 − 𝜗𝜗)(𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
-(𝜂𝜂))t		(25) 

Here 𝑟𝑟#	and 𝑟𝑟1 typify the amount of agents who select strategies 𝑥𝑥 and 𝑦𝑦 
respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
arbitrary amount, making the model easier to understand. The compliance 
coefficient determines whether it is more beneficial to change strategies or stick 
with the it according to interactions. This decision is based on the return-oriented 
nature	(1 − 𝜗𝜗) or the conformist and non-return effect (𝜗𝜗).	𝜁𝜁	is the fraction that 
can not be affected by non-return dimensions. 
While 𝜂𝜂 represent the fraction that prefer strategy 𝑥𝑥 with non-return motives, 
𝑤𝑤!
#(𝜂𝜂) and 𝑤𝑤!

-(𝜂𝜂) show the yields of the strategies 𝑥𝑥 and 𝑦𝑦 respectively. Players 
can update their thoughts and preferences at any time. We will use the replicator 
dynamics from the base model to analyze how many people use strategy 𝑥𝑥 with 
non-return motives over time. 

∆𝜂𝜂 = 𝜂𝜂!() − 𝜂𝜂 = 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂)𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X			(26) 
The probability of a player with strategy x matching a player with the opposite 
strategy is shown by	 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂).	 When	 𝜂𝜂	 has extreme values, this match is 
unlikely.	𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X	shows the speed of spread. Here 𝜉𝜉 is the sensitivity to the 
difference between return and non-return effects. 
 
The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
adheres to with probability 𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X. According to equation 26, there are four 
equilibria as 𝜂𝜂 = 0, 𝛽𝛽 = 0, 𝜉𝜉 = 0 and	𝑟𝑟# = 𝑟𝑟-. Necessary condition for the last 
equilibrim can be written as 

𝜗𝜗(𝜂𝜂 − 𝜁𝜁)
1 − 𝜗𝜗] = 𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
#(𝜂𝜂)				(26.1)	 

The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
stable, the derivative of the replicator dynamics with respect to it must be negative. 
To achieve this, the following inequality has to be met. 

𝜗𝜗 < (1 − 𝜗𝜗) ~
𝜕𝜕𝑤𝑤!

-(𝜂𝜂)
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑤𝑤!
#(𝜂𝜂)

𝜕𝜕𝜕𝜕 �				(26.2) 

Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
as the payoff advantage of the opposite strategy does not exceed  

, balances the effects of the non-return process and the effect of the yield difference. 
Copying strategy x is favored by non-return (fraction as 𝜂𝜂. Now, we’ll derive a new replicator dynamic. But first, non-return effects 

need to be rewrited. 

													𝑟𝑟# = 1
2] s𝜗𝜗(𝜂𝜂 − 𝜁𝜁) + (1 − 𝜗𝜗)(𝑤𝑤!

#(𝜂𝜂) 	− 𝑤𝑤!
-(𝜂𝜂))t			(24)	 

                           𝑟𝑟1 = 1
2] s𝜗𝜗(𝜁𝜁 − 𝜂𝜂) + (1 − 𝜗𝜗)(𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
-(𝜂𝜂))t		(25) 

Here 𝑟𝑟#	and 𝑟𝑟1 typify the amount of agents who select strategies 𝑥𝑥 and 𝑦𝑦 
respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
arbitrary amount, making the model easier to understand. The compliance 
coefficient determines whether it is more beneficial to change strategies or stick 
with the it according to interactions. This decision is based on the return-oriented 
nature	(1 − 𝜗𝜗) or the conformist and non-return effect (𝜗𝜗).	𝜁𝜁	is the fraction that 
can not be affected by non-return dimensions. 
While 𝜂𝜂 represent the fraction that prefer strategy 𝑥𝑥 with non-return motives, 
𝑤𝑤!
#(𝜂𝜂) and 𝑤𝑤!

-(𝜂𝜂) show the yields of the strategies 𝑥𝑥 and 𝑦𝑦 respectively. Players 
can update their thoughts and preferences at any time. We will use the replicator 
dynamics from the base model to analyze how many people use strategy 𝑥𝑥 with 
non-return motives over time. 

∆𝜂𝜂 = 𝜂𝜂!() − 𝜂𝜂 = 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂)𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X			(26) 
The probability of a player with strategy x matching a player with the opposite 
strategy is shown by	 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂).	 When	 𝜂𝜂	 has extreme values, this match is 
unlikely.	𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X	shows the speed of spread. Here 𝜉𝜉 is the sensitivity to the 
difference between return and non-return effects. 
 
The model involving the non-return effect can be summarized. The player who 
prefers strategy x through some non-return aspect, changes the strategy she 
adheres to with probability 𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X. According to equation 26, there are four 
equilibria as 𝜂𝜂 = 0, 𝛽𝛽 = 0, 𝜉𝜉 = 0 and	𝑟𝑟# = 𝑟𝑟-. Necessary condition for the last 
equilibrim can be written as 

𝜗𝜗(𝜂𝜂 − 𝜁𝜁)
1 − 𝜗𝜗] = 𝑤𝑤!

-(𝜂𝜂) − 𝑤𝑤!
#(𝜂𝜂)				(26.1)	 

The equation is satisfied by 𝜂𝜂, which represents the evolutionary steady state. The 
evolutionary stationary 𝜂𝜂,  balances the effects of the non-return process and the 
effect of the yield difference. Copying strategy 𝑥𝑥 is favored by non-return (fraction	
𝜂𝜂)  pressures, but it is offset by the advantage of return strategy 𝑦𝑦. To keep	𝜂𝜂 
stable, the derivative of the replicator dynamics with respect to it must be negative. 
To achieve this, the following inequality has to be met. 

𝜗𝜗 < (1 − 𝜗𝜗) ~
𝜕𝜕𝑤𝑤!

-(𝜂𝜂)
𝜕𝜕𝜕𝜕 −

𝜕𝜕𝑤𝑤!
#(𝜂𝜂)

𝜕𝜕𝜕𝜕 �				(26.2) 

Strategies that generate low returns may persist and be resilient in the presence of 
non-return pressure. Hence, population structure can be shaped by the desire to 
adapt or behavioral dimension.  

Statements 26.1 and 26.2 show an important result. If a dominant part of players 
who adopted strategy 𝑥𝑥 made their choice motivated by non-return effects, as long 
as the payoff advantage of the opposite strategy does not exceed  

) pressures, but it is offset by the advantage 
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respectively. The model only looks at how two strategy multiply. Thus 1/2	is an 
arbitrary amount, making the model easier to understand. The compliance 
coefficient determines whether it is more beneficial to change strategies or stick 
with the it according to interactions. This decision is based on the return-oriented 
nature	(1 − 𝜗𝜗) or the conformist and non-return effect (𝜗𝜗).	𝜁𝜁	is the fraction that 
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strategy is shown by	 𝛽𝛽𝛽𝛽(1 − 𝜂𝜂).	 When	 𝜂𝜂	 has extreme values, this match is 
unlikely.	𝜉𝜉W𝑟𝑟# − 𝑟𝑟-X	shows the speed of spread. Here 𝜉𝜉 is the sensitivity to the 
difference between return and non-return effects. 
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adopted strategy x made their choice motivated by non-return effects, as long as the payoff 
advantage of the opposite strategy does not exceed 𝜗𝜗(1 − 𝜁𝜁)

(1 − 𝜗𝜗)- , strategy 𝑥𝑥 will continue to be an evolutionary stable 
equilibrium. Even if strategy 𝑦𝑦 earns more than strategy	𝑥𝑥, steady state is reached 
when non-return effects balance the difference in returns. This important result is 
visualized in Figure 2. 
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Source: Prepared by the authors, adopted from Bowles (2006). 
This figure apparently and clearly emphasizes that the evolutionary stable point is 
achieved with one strict rule, yield effect should be equal to non-return effect 
between opposite strategies. So, it is clear that, yield-low strategies can survive in 
investment market.   

Conclusion 

The present research findings unequivocally demonstrate that individuals who 
exhibit unconditional altruism are more likely to adopt low-return strategies. 
These individuals hold the belief that their own utility level is positively correlated 
with the benefit levels of those with whom they interact. Consequently, they 
persist in their preference for the same strategy in the subsequent period. 
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This figure apparently and clearly emphasizes that the evolutionary stable point is achieved with 
one strict rule, yield effect should be equal to non-return effect between opposite strategies. So, it 
is clear that, yield-low strategies can survive in investment market.

4. Conclusion

The present research findings unequivocally demonstrate that individuals who exhibit 
unconditional altruism are more likely to adopt low-return strategies. These individuals hold 
the belief that their own utility level is positively correlated with the benefit levels of those with 
whom they interact. Consequently, they persist in their preference for the same strategy in the 
subsequent period.

In reciprocal situations, players’ behavior is directly influenced by their assumptions about the 
thoughts of other players. Specifically, players’ behavior is shaped by their assumptions about 
what others are thinking about themselves.

A player with a sense of reciprocity, who believes that other players have a negative opinion of her, 
subtracts the sum of these players’ utilities from her utility function. Conversely, the total benefit 
of the other players is included in the utility function as positive. In contrast, unconditionally 
selfish players only interact and determine strategies that are focused on their own benefits.

If the players in this context, the investors, behave in a return-oriented manner or are selfish, the 
only condition for an evolutionarily stable investment strategy is that the entire group favors the 
same investment strategy. Therefore, an evolutionarily stable investment strategy that is solely 
return-oriented seems unlikely. Another reason for this outcome is the players who prefer to 
continue with a low-return investment strategy, not for a high return.

Striking a balance between the advantage of return and the feeling of unconditional altruism or 
reciprocity ensures the survival of low-return strategies. This also accounts for individuals who 
earn less than their loved ones but are content with their success. These findings underscore the 
importance of the behavioral (non-rational) preferences of humans, who are social beings.

Achieving a return-oriented evolutionary balance requires specific factors, including sensitivity 
to yield differences, the absence of systematic error, and rational expectations for the future. 
However, humans are prone to making mistakes, have strong emotions, and are driven by 
impulses. This dimension is the primary reason why the investment strategy that provides the 
highest return, the strategy that will capture the whole market, remains purely theoretical. In 
a market where some individuals make mistakes and non-return processes affect them, an 
investment strategy that captures the entire market and always generates a profit is unrealistic.

Let us summarize the main contributions of this paper to literature;
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•	 The research reveals a significant insight: while some approaches may not result in substantial 
gains, they may still be favored by the public. This implies that the triumph of the most 
advantageous strategy is not a certainty and is influenced by various factors.

•	 Additionally, the research underscores the reality that humans do not make purely logical 
decisions but are influenced by emotions and social factors. By applying evolutionary game 
theory to this context, we can achieve a more precise comprehension of human behavior and 
decision-making.

•	 Moreover, the study’s findings have significant implications for the analysis of financial 
markets, revealing why stock prices and investment markets may not reach equilibrium 
values over time. Nevertheless, it’s essential to note that this specific topic falls outside 
the scope of the research, and additional studies are required to investigate these intricate 
dynamics fully.

•	 Our findings, through the use of evolutionary game theory tools, suggest that return-oriented 
equilibria can only be achieved in stock markets that are dominated by rational investors. 
Although our study does not disprove the existence of rational investors or the stock market 
itself, it does raise questions about the likelihood of such an equilibrium. The evaluation 
of an ideal stock market’s efficiency can only be conducted in a theoretical manner due to 
inherent limitations.

•	 The efficiency and perfection of a stock market can only be evaluated theoretically, for the 
same reasons.

•	 The present study endeavors to explore the implications of non-return effects on strategic 
changes within a theoretical framework.

•	 The crucial issue at hand is the decision that people have to make between acquiring material 
possessions or pursuing spiritual fulfillment.

•	 It is important to note that our study stands out from others in its emphasis on the achievement 
of global evolutionary stasis through pure financial return, as opposed to local evolutionary 
stasis, which is achieved through the weight of non-return effects.

Our study aspires to introduce evolutionary game theory tools which have been relatively 
underutilized in Turkey, with the aim of highlighting their potential for future research endeavors. 
Our overarching objective is to demonstrate the efficacy of these tools in the domain of game 
theory and pave the way for future research in Turkey. We have every confidence in our ability to 
accomplish this goal and hope that our work will prove to be a valuable contribution to the field.
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