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DIFFERENCE MATRIX AND SOME MULTIPLIER SEQUENCE

SPACES

RAMAZAN KAMA AND BILAL ALTAY

Abstract. In this paper we show that completeness and barrelledness of a

normed space can be characterized by means of sequence spaces obtained by

a sequence in a normed space and difference matrix method. Other related
results are established.

1. Introduction

By N and R, we denote the sets of all natural and real numbers, respectively.
Let RN be the space of all real sequences. Any vector subspace of RN is called a
sequence space. By `∞, c and c0, we write the spaces of all bounded, convergent
and null sequences x = (xk), respectively, and we denote the norm on these spaces
by ‖x‖∞ = sup

k
| xk |. Also by bs, cs and `1, we denote the spaces of all bounded,

convergent and absolutely convergent series, respectively.
Let A = (ank)be an infinite matrix of real numbers ank, where n, k ∈ N. Then,

we write Ax =
(
(Ax)n

)
, the A-transform of x ∈ RN, if (Ax)n =

∑
k ankxk converges

for each n ∈ N. For a sequence space λ, the matrix domain λA of an infinite matrix
A is defined by

λA =
{
x = (xk) ∈ RN : Ax ∈ λ

}
,

which is a sequence space.
Let λ denote any one of the classical sequence spaces`∞, c and c0. λ∆ consisting

of the sequences x = (xk) is called as the difference sequence space, where ∆ denotes

the backward difference matrix ∆ = (∆nk) and ∆(1) = (∆
(1)
nk ) denotes the transpose

of the matrix ∆, the forward difference matrix, which are defined by

∆nk =

{
(−1)n−k , if n− 1 ≤ k ≤ n,

0 , if 0 ≤ k < n− 1 or k > n,
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and

∆
(1)
nk =

{
(−1)n−k , if n ≤ k ≤ n+ 1,

0 , if 0 ≤ k < n or k > n+ 1

for all k, n ∈ N, respectively.
Several authors introduced and studied the domain of forward and backward

difference matrices in classical sequence spaces [4, 5, 6, 9, 12, 13, 14].
A series

∑
k xk in a real Banach space X is called weakly unconditionally Cauchy

series (wuCs) if
∑
k |f(xk)| < ∞ for every f ∈ X∗(the dual space of X). We

write the X-valued sequence spaces of weakly unconditionally Cauchy series, weakly
convergent, bounded, absolutely convergent and convergent for wuCs(X), wcs(X),
bs(X), `1(X) and cs(X), respectively.

It is well known (see [3] and [8]) that x = (xk) ∈ wuCs(X) if and only if
(akxk) ∈ cs(X) for every a = (ak) ∈ c0, and also well know (see [7] and [15]) that
X is a normed space then x = (xk) ∈ wuCs(X) if and only if the set

E =

{
n∑
k=1

akxk : |ak| ≤ 1, k = 1, 2, . . . , n; n ∈ N

}
(1.1)

is bounded.
In [1, 16], authors used the space

S(x) = {a = (ak) ∈ `∞ : (akxk) ∈ cs(X)}

of an arbitrary sequence (xk) in a normed space X to characterize completeness
and barrelledness of a normed space and weakly unconditionally Cauchy series. In
[2], the space BS(x), LS(x) and LSw(x) were defined by the set of all sequences
a = (ak) ∈ RN such that (akxk) ∈ bs(X), (akxk) ∈ cs(X) and (akxk) ∈ wcs(X),
respectively and some properties of these spaces were studied. In [11], these spaces
are studied in the particular case of Cesáro summability.

In this paper we introduce some new sequence spaces of real sequences obtained
by sequence in a normed space and backward difference method. We give some
characterizations related to completeness and barrelledness of a normed space and
some inclusion relations associated with these sequence spaces.

2. Main Results

In this section, we define some new sets of real sequences obtained by sequence
in a normed space and backward difference method. Also, we give some characteri-
zations the completeness and barrelledness of a normed space X by means of these
spaces.

For a sequence x = (xk) in a normed space X, the sets BS∆(x), LS∆(x),
LS∆w(x) and LS∆0(x) are defined by

BS∆(x) =
{
a = (ak) ∈ RN : (∆k(a)xk) ∈ bs(X)

}
LS∆0(x) = {a = (ak) ∈ BS∆(x) : (∆k(a)xk) ∈ w∗cs(X∗∗)}
LS∆(x) = {a = (ak) ∈ BS∆(x) : (∆k(a)xk) ∈ cs(X)}
LS∆w(x) = {a = (ak) ∈ BS∆(x) : (∆k(a)xk) ∈ wcs(X)}
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where ∆k(a) = (ak − ak−1). The sets BS∆(x), LS∆(x), LS∆w(x) and LS∆0(x)
are the normed spaces with the norm

‖a‖BS∆ = sup
n

∥∥∥∥∥
n∑
k=1

∆k(a)xk

∥∥∥∥∥ .
It is clear that LS∆(x) ⊂ LS∆w(x) ⊂ LS∆0(x) ⊂ BS∆(x).

For a sequence f = (fk) in X∗, we define the set

LS∆w∗(f) =
{
a = (ak) ∈ RN : (∆k(a)xk) ∈ w∗cs(X∗)

}
.

It is clear that the inclusions LS∆(f) ⊂ LS∆w(f) ⊂ LS∆w∗(f) and S∆w∗(f) =
LS∆w∗(f) ∩ (l∞)C are hold.

Theorem 2.1. Let X be a normed space and x = (xk) be a sequence in X. Then,
BS∆(x) and LS∆0(x) are Banach spaces with the norm ‖.‖BS∆.

Proof. Firstly, we shall prove the completeness of BS∆(x). Let (am) ⊂ BS∆(x)
be a Cauchy sequence. Then, there exists ε > 0 and m0 ∈ N such that for p, q > m0

‖ap − aq‖BS∆ < ε(2.1)

and thus

‖∆i(a
p − aq)xi‖ =

∥∥∥∥∥
i∑

k=1

∆k(ap − aq)xk −
i−1∑
k=1

∆k(ap − aq)xk

∥∥∥∥∥
≤ 2‖ap − aq‖BS∆ < ε

for every i ∈ N. This means that (∆k(am)) is a Cauchy sequence in RN for every
k ∈ N. We suppose that ∆k(am) → ∆k(a0) ∈ R for every k ∈ N. We show that
a0 ∈ BS∆(x). From (2.1) if we take limit as q →∞, then∥∥∥∥∥

n∑
k=1

∆k(ap − a0)xk

∥∥∥∥∥ ≤ ε(2.2)

for every n ∈ N. Since ap ∈ BS∆(x) for each p ∈ N there exists Kp > 0 such that

‖ap‖BS∆ ≤ Kp.(2.3)

From (2.2) and (2.3) for ε > 0 and p > m0 we have the inequality

‖a0‖BS∆ = sup
n

∥∥∥∥∥
n∑
k=1

∆k(a0)xk

∥∥∥∥∥
≤ sup

n

∥∥∥∥∥
n∑
k=1

∆k(a0 − ap)xk

∥∥∥∥∥+ sup
n

∥∥∥∥∥
n∑
k=1

∆k(ap)xk

∥∥∥∥∥
≤ ε+Kp.

Hence, this proof is complete.
Now, we show that the completeness of LS∆0(x). Let (am) be a Cauchy sequence

in LS∆0(x). Since LS∆0(x) ⊂ BS∆(x), there exists a sequence a0 ∈ BS∆(x) such
that am → a0. For x∗ ∈ X∗ there exists (y∗∗m ) ⊂ X∗∗ and n0 ∈ N such that for
ε > 0 and n > n0 ∣∣∣∣∣

n∑
k=1

∆k(am)x∗(xk)− x∗(y∗∗m )

∣∣∣∣∣ < ε

3
(2.4)
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for m ∈ N. On the other hand, since (am) be a Cauchy sequence there exists ε > 0
and m0 ∈ N such that for p, q > m0

‖ap − aq‖BS∆ <
ε

3
.(2.5)

We can choose x∗ ∈ SX∗ (the unit sphere of X∗). From (2.4) for ε > 0 and p, q > m0

(2.6)
‖y∗∗p − y∗∗q ‖ = |x∗(y∗∗p − y∗∗q )|

≤ 2ε
3 + ‖ap − aq‖BS∆

< ε.

Hence (y∗∗m ) is a Cauchy sequence in X∗∗. Thus there exists y∗∗0 ∈ X∗∗ such that
limm y

∗∗
m = y∗∗0 . If we take limit as q →∞ from (2.5) and (2.6), then

‖ap − a0‖BS∆ <
ε

3
and ‖y∗∗p − y∗∗0 ‖ <

ε

3
,

and also using (2.4), for n > n0 we get∣∣∣∣∣
n∑
k=1

∆k(a0)x∗(xk)− x∗(y∗∗0 )

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
k=1

∆k(a0)x∗(xk)−
n∑
k=1

∆k(ap)x∗(xk)

∣∣∣∣∣
+

∣∣∣∣∣
n∑
k=1

∆k(ap)x∗(xk)− x∗(y∗∗p )

∣∣∣∣∣
+|x∗(y∗∗p )− x∗(y∗∗0 )|

<
ε

3
+
ε

3
+
ε

3
= ε.

Then a0 ∈ LS∆0(x). �

Theorem 2.2. Let X be normed space. Then, X is a Banach space if and only if
LS∆(x) (or LS∆w(x)) is a Banach space for every sequence x = (xk) in X with
the norm ‖.‖BS∆.

Proof. Let x = (xk) be a sequence in X and (am) be a Cauchy sequence in LS∆(x)
such that am → a0 ∈ BS∆(x). Since the sequence (am) is in LS∆(x), there exists
(ym) ⊂ X and n0 ∈ N such that for ε > 0 and n > n0∥∥∥∥∥

n∑
k=1

∆k(am)xk − ym

∥∥∥∥∥ < ε

3
(2.7)

for m ∈ N. Since (am) be a Cauchy sequence, there exists ε > 0 and m0 ∈ N such
that for p, q > m0

‖ap − aq‖BS∆ <
ε

3
.(2.8)

Then from (2.7) for ε > 0 and p, q > m0

‖yp − yq‖ ≤ 2ε
3 + ‖ap − aq‖BS∆

< ε.
(2.9)

Therefore (ym) is a Cauchy sequence in X, and by the completeness of X there
exists y0 ∈ X such that limm ym = y0. If we take limit as q → ∞ from (2.8) and
(2.9), then

‖ap − a0‖BS∆ <
ε

3
and ‖yp − y0‖ <

ε

3
,
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and also using (2.7), for n > n0 we have that∥∥∥∥∥
n∑
k=1

∆k(a0)xk − y0

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑
k=1

∆k(a0 − ap)xk

∥∥∥∥∥
+

∥∥∥∥∥
n∑
k=1

∆k(ap)xk − yp

∥∥∥∥∥+ ‖yp − y0‖

<
ε

3
+
ε

3
+
ε

3
= ε.

This means that a0 ∈ LS∆(x).
If X is not complete then there exists a sequence x = (xk) ∈ `1(X) \ cs(X). Let

suppose that ‖xk‖ < 1
k2k for every k ∈ N. We denote the sequence an ∈ RN for

every n ∈ N by

ank =

{
n− k + 1, if k ≤ n,
0, if k > n,

(k ∈ N).

We have that an ∈ LS∆(x) for each n ∈ N. If we consider a0 ∈ RN such that a0
k = 1

for all k ∈ N, then a0 ∈ BS∆(x) \ LS∆(x) and limn a
n = a0. Hence LS∆(x) is

not complete. �

Theorem 2.3. If f = (fk) is a sequence in X∗, then LS∆w∗(f) ∩ BS∆(f) is a
Banach space.

Proof. Let f = (fk) is a sequence in X∗ and (am) be a Cauchy sequence in
LS∆w∗(f) such that am → a0 ∈ BS∆(f). Since (am) ⊂ LS∆w∗(f) there ex-
ists (gm) ⊂ X∗ and n0 ∈ N such that for x ∈ SX , ε > 0 and n > n0∣∣∣∣∣

n∑
k=1

∆k(am)fk(x)− gm(x)

∣∣∣∣∣ < ε

3
(2.10)

for m ∈ N . On the other hand, since (am) be a Cauchy sequence there exists ε > 0
and m0 ∈ N such that for p, q > m0

‖ap − aq‖BS∆ <
ε

3
.(2.11)

Then, from (2.10) for ε > 0 and p, q > m0

‖gp − gq‖ ≤ 2ε
3 + ‖ap − aq‖BS∆

< ε.
(2.12)

So (gm) is a Cauchy sequence in X∗. Hence there exists g0 ∈ X∗ such that
limm gm = g0. We take limit as q → ∞ from (2.11) and (2.12), and suppose
that

‖ap − a0‖BS∆ <
ε

3
and ‖gp − g0‖ <

ε

3
,(2.13)
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and also using (2.10) for n > n0∣∣∣∣∣
n∑
k=1

∆k(a0)fk(x)− g0(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑
k=1

∆k(a0 − ap)fk(x)

∣∣∣∣∣
+

∣∣∣∣∣
n∑
k=1

∆k(ap)fk(x)− gp(x)

∣∣∣∣∣+ |gp(x)− g0(x)|

<
ε

3
+
ε

3
+
ε

3
= ε,

and hence a0 ∈ LS∆w∗(f). �

Theorem 2.4. The normed space X is a barrelled space if and only if LS∆w∗(f) ⊂
BS∆(f) for every sequence f = (fk) in X∗.

Proof. We suppose that X is not a barrelled space. Then there exists a weak∗

bounded set N ⊂ X∗ which is unbounded. Therefore there exists (gk) ⊂ N and
Cx > 0 such that

‖gk‖ > k2 and sup
k
|gk(x)| < Cx

for every x ∈ X. We define the sequence (hk) ⊂ X∗ by

zk =

{
g1, if k = 1,

1
kgk −

1
k−1gk−1, if k > 1.

We consider the sequence x = (1, 1, 1, ...). Then x ∈ LS∆w∗(z) \BS∆(z). �

In [10], we were defined the spaces S∆(x) and S∆w(x) by

S∆(x) = {a = (ak) ∈ (`∞)∆ : (∆k(a)xk) ∈ cs(X)} ,
S∆w(x) = {a = (ak) ∈ (`∞)∆ : (∆k(a)xk) ∈ wcs(X)} .

It is obvious that the inclusions S∆(x) = LS∆(x) ∩ (l∞)∆ and S∆w(x) =
LS∆w(x) ∩ (l∞)∆ are hold. Now, we obtain some results associate with LS∆(x),
S∆(x) and (c0)∆. This results are also valid if we take the spaces S∆w(x) and
LS∆w(x) instead of S∆(x) and LS∆(x), respectively.

Theorem 2.5. Let X be a normed space and x = (xk) be a sequence in X. If
inf
k
‖xk‖ > 0, then LS∆(x) = S∆(x).

Proof. If a = (ak) ∈ LS∆(x), then we have

‖∆n(a)xn‖ =

∥∥∥∥∥
n∑
k=1

∆k(a)xk −
n−1∑
k=1

∆k(a)xk

∥∥∥∥∥→ 0, n→∞.

Therefore ∆n(a)→ 0, and hence (ak) ∈ (c0)∆. This shows that (ak) ∈ S∆(x). The
inclusion S∆(x) ⊂ LS∆(x) is obvious. �

Theorem 2.6. If X is a Banach space and x = (xk) be a sequence in X, then
inf
k
‖xk‖ > 0 if and only if LS∆(x) = S∆(x).
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Proof. Necessity follows immediately from Theorem 2.5.
If inf

k
‖xk‖ = 0, then there exists a strictly increasing sequence (mi) in N such

that ‖xmi‖ <
1

i3
. We define the sequence a = (ak) by

∆k(a) =

{
i, if k = mi,
0, if k 6= mi.

It is obvious that (ak) 6∈ S∆(x). Since the series
∑∞
k=1 ∆k(a)xk is convergent by

Cauchy criterion, we have (ak) ∈ LS∆(x). �

Theorem 2.7. Let X be a normed space and x = (xk) be a sequence in X. If
inf
k
‖xk‖ > 0, then S∆(x) ⊂ (c0)∆.

Proof. If (ak) ∈ S∆(x),

‖∆n(a)xn‖ =

∥∥∥∥∥
n∑
k=1

∆k(a)xk −
n−1∑
k=1

∆k(a)xk

∥∥∥∥∥→ 0, n→∞.

Thus ∆n(a)→ 0, and hence (ak) ∈ (c0)∆. �

Theorem 2.8. Let X be a Banach space and x = (xk) be a sequence in X. Then
inf
k
‖xk‖ > 0 if and only if S∆(x) ⊂ (c0)∆.

Proof. Necessity follows immediately from Theorem 2.7.
To prove the sufficiency it is enough to show S∆(x)\(c0)∆ 6= ∅. Let inf

k
‖xk‖ = 0.

Then there exists a strictly increasing sequence (mi) in N such that ‖xmi‖ <
1

i2
.

Let a = (ak) be the sequence defined by

∆k(a) =

{
1, if k = mi,
0, if k 6= mi.

It can be easily seen that a 6∈ (c0)∆. Since (∆k(a)xk) ∈ cs(X) by Cauchy criterion,
a ∈ S∆(x). �

Theorem 2.9. If X be a Banach space, then the sequence x = (xk) ∈ wuCs(X)
and inf

k
‖xk‖ > 0 if and only if S∆(x) = (c0)∆.

Proof. Let x = (xk) ∈ wuCs(X) and inf
k
‖xk‖ > 0. Since inf

k
‖xk‖ > 0, the inclusion

S∆(x) ⊂ (c0)∆ is obtained from Theorem 2.8. We take b = (bk) ∈ (c0)∆. Since
x = (xk) ∈ wuCs(X), the series

∑
k ∆k(b)xk is convergent. Thus b = (bk) ∈ S∆(x),

and hence the inclusion (c0)∆ ⊂ S∆(x) is satisfied.
Since (c0)∆ ⊂ S∆(x), we have x ∈ wuCs(X). Also, by Theorem 2.8, the

inequality inf
k
‖xk‖ > 0 is obtained. �

3. Conclusion

In this paper, we introduced and studied the sets BS∆(x), LS∆(x), LS∆w(x)
and LS∆0(x) (LS∆w∗(f)) by means of a sequence x = (xk) in a normed space X
(f = (fk) in X∗) and the difference matrix. We obtained the characterizations of
completeness and barrelledness of the normed space X by means of these spaces.
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Finally, we given some relations between these spaces. It is natural that the inves-
tigation of more general conclusion corresponding to the results of this paper can
be studied by taking more general matrices instead of the difference matrix.
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