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ABSTRACT: Soft set theory, introduced by Molodtsov in 1999, is a mathematical tool to deal with uncertainty. 

Since then, different kinds of soft set operations have been defined and used in various types. In this paper, it 

is aimed to contribute to the soft set literature by obtaining the distibutions of soft binary piecewise operations 

over complementary soft binary piecewise difference and lambda operations to present the connections between 

them. 
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1. Introduction  

The existence of some types of uncertainty in the problems of many fields such as economics, 

environmental and health sciences, engineering prevents us from using classical methods to 

solve the problems successfully. There are three well-known basic theories that we can 

consider as mathematicals tool to deal with uncertainties, which are Probability Theory, 

Fuzzy Set Theory and Interval Mathematics. But since all these theories have their own 

shortcomings, Molodtsov (Molodtsov,1999) introduced Soft Set Theory as a mathematical 

tool to overcome these uncertainties.  Since then, this theory has been applied to a variety of 

fields, including information systems, decision-making as in Özlü (2022a,2022b), 

optimization theory, game theory, operations research, measurement theory, and some 

algebraic structures (Özlü and Sezgin, 2021). First contributions as regards soft set operations 

are made in (Maji et. al., 2003; Pei and Miao, 2005). After then, several soft set operations 

(restricted and extended soft set operations) were introduced and examined in (Ali et. al., 

2009). Basic properties of soft set operations were discussed and the interconnections of soft 

set operations with each other were illustrated in (Sezgin and Atagün, 2010). They also 

defined the notion of restricted symmetric difference of soft sets and investigate its 

properties.  A new soft set operation called extended difference of soft sets was defined in 

(Sezgin et al., 2019) and extended symmetric difference of soft sets was defined and its 
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properties were investigated in (Stojanovic, 2021). When the studies are examined, we see 

that the operations in soft set theory proceed under two main headings, as restricted soft set 

operations and extended soft set operations.  

 

Two conditional complements of sets as a new concept of set theory, i.e., inclusive 

complement and exclusive complement were proposed and the relationships between them 

were explored in (Çağman, 2021). By the inspiration of this study, some new complements 

of sets were defined in (Sezgin et al., 2023c). They also transferred these complements to 

soft set theory, and some new restricted soft set operations and extended soft set operations 

were defined in (Aybek, 2023). Demirci, 2023; Sarıalioğlu, 2023; Akbulut, 2023 defined a 

new type of extended operation by changing the form of extended soft set operations using 

the complement at the first and second row of the piecewise function of extended soft set 

operations and studied the basic properties of them in detail. Moreover, a new type of soft 

difference operations was defined in (Eren and Çalışıcı, 2019) and by being inspired this 

study, Yavuz, 2023 defined some new soft set operations, which they call binary piecewise 

soft set operations and they studied their basic properties in detail, too. Also, Sezgin and 

Demirci, 2023; Sezgin and Sarıalioğlu, 2023; Sezgin and Yavuz, 2023; Sezgin and Aybek, 

2023, Sezgin et al., 2023a and Sezgin et al., 2023b continued their work on soft set operations 

by defining a new type of binary piecewise soft set operation. They changed the form of soft 

binary piecewise operation by using the complement at the first row of the soft binary 

piecewise operations. 

 

In Sezgin and Yavuz, 2023 and Sezgin and Çağman, 2023, complementary soft binary 

piecewise lambda and difference operation were defined, respectively. The algebraic 

properties of these new operations were examined in detail. Especially the distributions of 

these operations over extended soft set operations, complementary extended soft set 

operations, soft binary piecewise operations, complementary soft binary piecewise 

operations and restricted soft set operations were handled. In this study, we contribute to the 

literature of soft set theory by obtaining the distributions of soft binary piecewise operations 

over complementary soft binary piecewise difference and lambda operations in order to 

reveal the interrelations of them. The organization of the paper is as follows: In Section 1, 

literature survey is given with a conclusion paragraph summarizing what is obtained in the 

paper. In Section 2 the main definitions used throughout the paper is given. In Section 3, first 

of all the distributions of soft binary piecewise operations over complementary soft binary 

piecewise difference operation and then distributions of soft binary piecewise operations 

over complementary soft binary piecewise lambda operation are handled. This paper is a 

theoretical study of soft set. 
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2. Preliminaries 

Definition 2.1. Let  U be the universal set,  E be the parameter set, P(U) be the power set of 

U and A ⊆ E. A pair  (F, A) is called a soft set over U where 𝐹 is a set-valued function such 

that F: A → P(U). (Molodtsov, 1999) 

 

The set of all the soft sets over U is designated by SE(U), and throughout this paper, all the 

soft sets are the elements of SE(U). 

 

 Çağman, 2021, defined two conditional complements of sets, for the ease of illustration, we 

show these complements as + and 𝜃, respectively. These complements are defined as 

following: Let O and L be two subsets of U.  L-inclusive complement of O is defined by, 

O+L= O’∪L and L-exlusive complement of  is defined by O𝜃L = O’∩L’. Here, U refers to 

a universe, O’ is the complement of O over U.  Sezgin et al., 2023c introduced such new 

three complements as binary operations of sets as following: Let O and Ö be two subsets of 

U.  Then, O*L=O’∪L’, O𝛾L= O’∩L, O𝝺L=O∪L’ (Sezgin et al., 2023c). Aybek, 2023 

conveyed these classical sets to soft sets, and they defined restricted and extended soft set 

operations and examined their properties. 

 

As a summary for soft set operations, we can categorize all types of soft set operations as 

following: Let "∇" be used to represent the set operations (i.e., here ∇ can be ∩, ∪,\, ∆, +,θ, 

*, λ,γ),  then restricted operations, extended operations, complementary extended operations, 

soft binary piecewise operations, complementary soft binary piecewise operations are 

defined in soft set theory as following:  

Definition 2.2. Let (O, W) and (L, B) be soft sets over U. The restricted  ∇ operation of 

(O, W) and (L, B) is the soft set (Y, S), denoted by (O, W)∇R(L, B) = (Y, S) , where S = W ∩

B ≠ ∅ and ∀τ ∈ S, Y(τ) =O(𝜏) ∇ L(τ). (Ali et. al., 2009 (restricted intersection, union and 

difference), Sezgin and Atagün, 2011 (restricted symmetric difference), Aybek, 2023 

(restricted plus,theta, star, theta and lambda)). 

Definition 2.3. Let (O, W) and (L, B) be soft sets over U. The extended  ∇ operation of 

(O, W) and (L, B) is the soft set (Y, S), denoted by (O, W)∇ε(L, B) = (Y, S) , where S = W ∪

B and ∀τ ∈ S,  
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Y(𝜏) = {

O(τ), τ ∈ W\B,

L(τ), τ ∈ B\W,

O(τ) ∇L(τ), τ ∈ W ∩ B.

 

(Maji et.al., 2003 (extended union); Ali et. al., 2009 (extended intersection); Sezgin et. al., 

2019 (extended difference); Stojanovic, 2021 (extended symmetric difference); Aybek, 2023 

(extended plus, theta, theta, lambda and star)) 

        Definition 2.4. Let (O, W) and (L, B) be soft sets over U.  The complementary extended  

∇ operation of (O, W) and (L, B) is the soft set (Y, S), denoted by (O, W) 
＊
  ∇ε

(L, B) = (Y, S) , 

where S = W ∪ B and ∀τ ∈ S, 

Y(𝜏) = {

O′(τ), τ ∈ W\B

L′(τ), τ ∈ B\W,

O(τ) ∇L(τ), τ ∈ B ∩ W.

 

(Sarıalioğlu, 2023 (Complementary extended gamma, intersection, star); Demirci, 2023 

(complementary extended plus, union and theta); Akbulut, 2023 (complementary extended 

difference and lambda) 

           Definition 2.5. Let (O, W) and (L, B) be soft sets over U. The soft binary piecewise ∇ 

operation of (O, W) and (L, B) is the soft set (Y, P), denoted by, (O, W)
~
∇ (L, B ) = (Y, P), 

where ∀𝜏∊W, 

                  O(𝜏),                         𝜏∊W\B 

 Y(𝜏)= 

                  O(𝜏) ∇L(𝜏) ,              𝜏∊W∩B 

 

(Eren and Çalışıcı, 2019 (soft binary piecewise difference); Yavuz, 2023 (soft binary 

piecewise intersection, union, plus, gamma, theta, lambda and star)) 

Definition 2.6. Let (O, W) and (L, B) be soft sets over U. The complementary soft 

binary piecewise ∇ operation of (O, W) and (L, B) is the soft set (Y, W), denoted by,

(O, W)
＊
~
∇

(Ö, B) = (Y, W), where ∀𝜏∊W; 

                  O’(𝜏),                     𝜏∊W\B 

 Y(𝜏)=  

                  O(𝜏) ∇L(𝜏),             𝜏∊W∩B 
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(Sezgin and Demirci, 2023 (complementary soft binary piecewise star operation); Sezgin and 

Sarıalioğlu, 2023 (complementary soft binary piecewise theta operation); Sezgin and Aybek, 

2023 (complementary soft binary piecewise gamma operation); Sezgin et al., 2023a 

(complementary soft binary piecewise intersction operation); Sezgin et al., 2023b 

(complementary soft binary piecewise union operation); Sezgin and Yavuz, 2023 

(complementary soft binary piecewise lambda operation); Sezgin and Çağman, 2023 

(complementary soft binary piecewise difference operation)) 

 

Definition 2.7. Let (O, W) and (L, B) be soft sets over U.  The complementary soft 

binary piecewise lambda (λ) operation of (O, W) and (L, B) is the soft set (Y, W),

denoted by, (O, W)
＊
~
λ

 (L, B) = (Y, W), where ∀𝜏∊W,  

                  O’(𝜏) ,                       𝜏∊W\B 

 Y(𝜏)= 

                 O(𝜏) ∪L’(𝜏),             𝜏∊W∩B 

 

(Sezgin and Yavuz, 2023) 

Definition 2.8. Let (O, W) and (L, B)  be soft  sets over U.  The complementary soft 

binary piecewise difference (\) operation of Let (O, W) and (L, B)  is the soft set (Y, W),

denoted by, (O, W)
＊
~
θ

 (L, B) = (Y, W), where ∀𝜏∊W,  

 

 

                  O’(𝜏) ,                     𝜏∊W\B 

 Y(𝜏)= 

                 O(𝜏) ∩L’(𝜏),            𝜏∊W∩B 

 

(Sezgin and Çağman, 2023) 

 

3. Distribution Rules 

In this section, distributions of soft binary piecewise operations over complementary soft 

binary piecewise difference and lambda operation are examined in detail and many 

interesting results are obtained. 
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3.1.1. Distribution of soft binary piecewise operations over complementary soft binary 

piecewise difference (\) operation 

1) (O,W) ∪̃[(L,B) 
＊
~
\

 (H,Z)]=[(O,W) 
~
 ∪ (L,B)] ∩̃ [(O, W) 

~
 λ(H,Z)],  where W∩B∩Z’ =∅ 

 Proof: Let first handle the left hand side of the equality and let (L,B) 
＊
~
\

 (H,Z)=(M,B), 

where ∀𝜏∊B; 

                 L’(𝜏),               𝜏∊B\Z 

 M(𝜏)= 

                 L(𝜏) ∩H’(𝜏),      𝜏∊B∩Z 

 

Let (O,W) ∪̃(M,B)=(N,W), where  ∀𝜏∊W; 

                 O(𝜏),                 𝜏∊W\B       

 N(𝜏)= 

                 O(𝜏) ∪M(𝜏),      𝜏∊W∩B     

Thus, 

                 O(𝜏),                               𝜏∊W\B  

 N(𝜏)=       O(𝜏) ∪L’(𝜏),                  𝜏∊W∩(B\Z)= W∩B∩Z’              

                O(𝜏) ∪［(L(𝜏) ∩H’(𝜏)],   𝜏∊W∩(B∩Z)= W∩B∩Z        

Now let handle the left hand side of the equality: [(O,W) 
~
 ∪ (L,B)] ∩̃ [(O, W) 

~
 λ(H,Z)],    

Let (O,W) 
~
 ∪  (L,B)=(V,W), where ∀𝜏∊W; 

               O(𝜏),                      𝜏∊W\B 

V(𝜏)= 

               O(𝜏) ∪L(𝜏),          𝜏∊W∩B  

Suppose that (O,W) λ̃ (H,Z)=(S,W), where ∀𝜏∊W; 

                O(𝜏),                     𝜏∊W\Z 

S(𝜏)= 

                O(𝜏) ∪H’(𝜏),        𝜏∊W∩Z 

Let (V,W) ∩̃(S,W)=(T,W). Then for all   ∀𝜏∊W; 
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                 V(𝜏),                      𝜏∊W\W=∅ 

T(𝜏)= 

                 V(𝜏) ∩S(𝜏),           𝜏∊W∩W     

Thus, 

               O(𝜏) ∩O(𝜏),                                    𝜏∊(W\B) ∩(W\Z)=W∩B’∩Z’ 

  T(𝜏)=    O(𝜏) ∩[(O(𝜏)∪ H’(𝜏)],                     𝜏∊(W\B) ∩(W∩Z)=W∩B’∩Z 

               [(O(𝜏) ∪L(𝜏)] ∩ O(𝜏),                     𝜏∊(W∩B) ∩(W\Z)=W∩B∩Z’ 

               [(O(𝜏) ∪ L(𝜏)] ∩ [(O(𝜏) ∪ H’(𝜏)],    𝜏∊(W∩B) ∩(W∩Z)=W∩B∩Z             

Thus, 

               O(𝜏)                                                𝜏∊(W\B) ∩(W\Z)=W∩B’∩Z’ 

  T(𝜏)=     O(𝜏),                                              𝜏∊(W\B) ∩(W∩Z)=W∩B’∩Z 

                O(𝜏),                                               𝜏∊(W∩B) ∩(W\Z)=W∩B∩Z’ 

               [(O(𝜏) ∪ L(𝜏)] ∩ [(O(𝜏) ∪H’(𝜏)],    𝜏∊(W∩B) ∩(W∩Z)=W∩B∩Z             

Here let handle 𝜏∊W\B in the first equation. Since W\B= W∩B’, if 𝜏∊B’, then 𝜏∊Z\B or 

𝜏∊(B∪Z)’. Hence, if 𝜏∊W\B, 𝜏∊W∩B’∩Z’ or 𝜏∊W∩B’∩Z. Thus, it is seen that N=T. 

2)［(O,W) 

＊
~
\

 (L,B)］∪̃ (H,Z)=[(O,W)∪̃(H,Z)］
＊

~
∩
［(L,B) 

＊
~
+

(H,Z)], where W∩B’∩Z=∅. 

Proof: Let first handle the left hand side of the equality and let (O,W) 

＊
~
\

 ( Ö,B)=(M,W), 

where ∀𝜏∊W; 

                  O’(𝜏),               𝜏∊W\B 

  M(𝜏)= 

                  O(𝜏) ∩L’(𝜏),      𝜏∊W∩B 

Let (M,W) ∪̃ (H,Z)=(N,W), where ∀𝜏∊W; 

                M(𝜏),                 𝜏∊W\Z     

N(𝜏)= 

                M(𝜏) ∪H(𝜏),      𝜏∊W∩Z    

Thus, 

               O’(𝜏),                             𝜏∊(W\B)\Z=W∩B’∩Z’ 

N(𝜏)=      O(𝜏) ∩L’(𝜏),                 𝜏∊(W∩B)\Z=W∩B∩Z’ 

               O’(𝜏)∪H(𝜏)                     𝜏∊(W\B)∩Z=W∩B’∩Z 

             ［O(𝜏) ∩L’(𝜏)] ∪H(𝜏)      𝜏∊(W∩B)∩Z=W∩B∩Z   
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Now let handle the left hand side of the equality:［(O,W)  ∪̃ (H,Z)］
＊

~
∩
［(L,B) 

＊
~
+

 (H,Z)］ 

Let  (O,W) ∪̃  (H,Z)=(V,W), where ∀𝜏∊W; 

               O(𝜏),                    𝜏∊W\Z 

V(𝜏)= 

               O(𝜏) ∪H(𝜏),          𝜏∊W∩Z 

Suppose that (L,B) +̃(H,Z)=(S,B), where ∀𝜏∊B; 

                L’(𝜏),                      𝜏∊ B\Z 

S(𝜏)= 

                L’(𝜏) ∪H(𝜏),            𝜏∊B∩Z 

Let (V,W)
＊

~
∩

 (S,B)=(T,W), where ∀𝜏∊W; 

                 V’(𝜏),                   𝜏∊W\B 

 T(𝜏)= 

                 V(𝜏)∩S(𝜏),          𝜏∊W∩B 

Thus, 

               O’(𝜏),                                              𝜏∊(W\Z)\B=W∩B’∩Z’ 

               O’(𝜏) ∩H’(𝜏),                                   𝜏∊(W∩Z)\B=W∩B’∩Z 

               O(𝜏) ∩L’(𝜏),                                    𝜏∊(W\Z)∩(B\Z)=W∩B∩Z’ 

T(𝜏)=       O(𝜏) ∩［L’(𝜏) ∪H(𝜏)],                   𝜏∊(W\Z)∩(B∩Z)=∅ 

              ［O(𝜏)∪H(𝜏)］∩L’(𝜏),                     𝜏∊(W∩Z)∩(B\Z)=∅ 

              ［O(𝜏) ∪H(𝜏)］∩［L’(𝜏) ∪H(𝜏)],     𝜏∊(W∩Z)∩(B∩Z)=W∩B∩Z        

It is seen that N=T. 

3) (O,W) \̃［(L,B) 
＊
~
\

 (H,Z)］=［(O,W) \̃ (L,B)∪̃［(O,W) ∩ ̃ (H,Z)], where W∩B∩Z’=∅ 

Proof: Let first handle the left hand side of the equality and let (L,B) 
＊
~
\

 (H,Z)=(M,B), 

where ∀𝜏∊B; 
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                 L’(𝜏),               𝜏∊B\Z 

 M(𝜏)=  

                 L(𝜏) ∩H’(𝜏),      𝜏∊B∩Z 

Let (O,W) \̃ (M,B)=(N,W), where  ∀𝜏∊W; 

 

                 O(𝜏),                 𝜏∊W\B       

 N(𝜏)= 

                  O(𝜏) ∩M’(𝜏),      𝜏∊W∩B           

Thus 

                 O(𝜏),                                𝜏∊W\B  

 N(𝜏)=       O(𝜏) ∩L(𝜏),                    𝜏∊W∩(B\Z)= W∩B∩Z’              

                O(𝜏) ∩［(L’(𝜏) ∪H(𝜏)],   𝜏∊W∩(B∩Z)= W∩B∩Z        

Now let handle the left hand side of the equality: ［(O,W) \̃ (L,B)］∪̃［(O,W) ∩̃(H,Z)],  

Let (O,W) \̃  (L,B)=(V,W), where ∀𝜏∊W; 

               O(𝜏),                      𝜏∊W\B 

V(𝜏)= 

               O(𝜏) ∩L’(𝜏),          𝜏∊W∩B  

Suppose that (O,W) ∩̃(H,Z)=(S,W), where ∀𝜏∊W; 

                O(𝜏),                     𝜏∊W\Z 

S(𝜏)= 

                O(𝜏) ∩H(𝜏),            𝜏∊W∩Z 

Let (V,W) ∪̃(S,W)=(T,W)     ∀𝜏∊W; 

                 V(𝜏),                     𝜏∊W\W=∅ 

T(𝜏)= 

                 V(𝜏) ∪S(𝜏),           𝜏∊W∩W    

 

Thus, 

               O(𝜏) ∪O(𝜏),                                    𝜏∊(W\B) ∩(W\Z)=W∩B’∩Z’ 

  T(𝜏)=    O(𝜏) ∪[(O(𝜏)∩ H(𝜏)],                     𝜏∊(W\B) ∩(W∩Z)=W∩B’∩Z 

               [(O(𝜏) ∩L’(𝜏)] ∪O(𝜏),                    𝜏∊(W∩B) ∩(W\Z)=W∩B∩Z’ 

               [(O(𝜏) ∩ L’(𝜏)] ∪ [(O(𝜏) ∩H(𝜏)],    𝜏∊(W∩B) ∩(W∩Z)=W∩B∩Z             
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Thus, 

               O(𝜏)                                                 𝜏∊(W\B) ∩(W\Z)=W∩B’∩Z’ 

  T(𝜏)=     O(𝜏),                                               𝜏∊(W\B) ∩(W∩Z)=W∩B’∩Z 

                O(𝜏),                                                𝜏∊(W∩B) ∩(W\Z)=W∩B∩Z’ 

               [(O(𝜏) ∩ L’(𝜏)] ∪ [(O(𝜏) ∩ H(𝜏)],    𝜏∊(W∩B) ∩(W∩Z)=W∩B∩Z             

Since W\B= W∩B’, if 𝜏∊B’, then 𝜏∊Z\B or 𝜏∊(B∪Z)’. Hence, if 𝜏∊W\B, 𝜏∊W∩B’∩Z’ or 

𝜏∊W∩B’∩Z. Thus, it is seen that N=T. 

4)［(O,W)

＊
~
\

(L,B)］\̃(H,Z)=［(O,W)\̃ (H,Z)］
＊

~
∩
［(L,B) 

＊
~
θ

 (H,Z)], where W∩B’∩Z=∅. 

Proof: Let first handle the left hand side of the equality and let (O,W) 

＊
~
\

 ( Ö,B)=(M,W), 

where ∀𝜏∊W; 

                  O’(𝜏),               𝜏∊W\B 

  M(𝜏)= 

                  O(𝜏) ∩L’(𝜏),      𝜏∊W∩B 

Let (M,W) \̃ (H,Z)=(N,W), where ∀𝜏∊W; 

                M(𝜏),                  𝜏∊W\Z     

N(𝜏)= 

                M(𝜏) ∩H’(𝜏),      𝜏∊W∩Z    

Thus, 

               O’(𝜏),                             𝜏∊(W\B)\Z=W∩B’∩Z’ 

N(𝜏)=      O(𝜏) ∩L’(𝜏),                 𝜏∊(W∩B)\Z=W∩B∩Z’ 

               O’(𝜏)∩H’(𝜏)                    𝜏∊(W\B)∩Z=W∩B’∩Z 

             ［O(𝜏) ∩L’(𝜏)] ∩H’(𝜏)     𝜏∊(W∩B)∩Z=W∩B∩Z   

Now let handle the left hand side of the equality:［(O,W)  \̃  (H,Z)］
＊

~
∩
［(L,B) 

＊
~
θ

 (H,Z］ 

Let  (O,W) \̃  (H,Z)=(V,W), where ∀𝜏∊W; 

 

               O(𝜏),                    𝜏∊W\Z 

V(𝜏)= 

               O(𝜏) ∩H’(𝜏),          𝜏∊W∩Z 
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Suppose that (L,B) 
＊
~
θ

  (H,Z)=(S,B), where ∀𝜏∊B; 

                L’(𝜏),                      𝜏∊ B\Z 

S(𝜏)= 

                L’(𝜏) ∩H’(𝜏),            𝜏∊B∩Z 

Let (V,W)
＊

~
∩

 (S,B)=(T,W), where ∀𝜏∊W; 

                 V’(𝜏),                 𝜏∊W\B 

 T(𝜏)= 

                 V(𝜏)∩S(𝜏),          𝜏∊W∩B 

Thus, 

               O’(𝜏),                                              𝜏∊(W\Z)\B=W∩B’∩Z’ 

               O’(𝜏) ∪H(𝜏),                                    𝜏∊(W∩Z)\B=W∩B’∩Z 

               O(𝜏) ∩L’(𝜏),                                    𝜏∊(W\Z)∩(B\Z)=W∩B∩Z’ 

T(𝜏)=       O(𝜏) ∩［L’(𝜏) ∩H’(𝜏)],                  𝜏∊(W\Z)∩(B∩Z)=∅ 

              [O(𝜏)∩H’(𝜏)］∩L’(𝜏),                      𝜏∊(W∩Z)∩(B\Z)=∅ 

              [O(𝜏) ∩H’(𝜏)］∩［L’(𝜏) ∩H’(𝜏)],    𝜏∊(W∩Z)∩(B∩Z)=W∩B∩Z         

It is seen that N=T. 

5)［(O,W)

＊
~
\

(L,B)］∩̃(H,Z)=［(O,W)∩̃(H,Z)］
＊

~
∩
［(L,B) 

＊
~
γ

(H,Z)], where W∩B’∩Z=∅. 

Proof: Let first handle the left hand side of the equality and let (O,W) 

＊
~
\

 (L,B)=(M,W), 

where ∀𝜏∊W; 

                  O’(𝜏),               𝜏∊W\B 

  M(𝜏)= 

                  O(𝜏) ∩L’(𝜏),     𝜏∊W∩B 

Let (M,W) ∩̃ (H,Z)=(N,W), where ∀𝜏∊W; 

                M(𝜏),                 𝜏∊W\Z     

N(𝜏)= 

                M(𝜏) ∩H(𝜏),      𝜏∊W∩Z    
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Thus, 

               O’(𝜏),                              𝜏∊(W\B)\Z=W∩B’∩Z’ 

N(𝜏)=      O(𝜏) ∩L’(𝜏),                   𝜏∊(W∩B)\Z=W∩B∩Z’ 

               O’(𝜏) ∩H(𝜏)                     𝜏∊(W\B)∩Z=W∩B’∩Z 

             ［O(𝜏) ∩L’(𝜏)] ∩H(𝜏)      𝜏∊(W∩B)∩Z=W∩B∩Z   

Now let handle the left hand side of the equality:［(O,W)  ∩̃ (H,Z)］
＊

~
∩
［(L,B) 

＊
~
γ

 (H,Z)］ 

Let  (O,W) ∩̃  (H,Z)=(V,W), where ∀𝜏∊W; 

               O(𝜏),                    𝜏∊W\Z 

V(𝜏)= 

               O(𝜏) ∩H(𝜏),          𝜏∊W∩Z 

Suppose that (L,B) 
＊
~
γ

 (H,Z)=(S,B), where ∀𝜏∊B; 

                L’(𝜏),                      𝜏∊ B\Z 

S(𝜏)= 

                L’(𝜏) ∩H(𝜏),            𝜏∊B∩Z 

Let (V,W)
＊

~
∩

 (S,B)=(T,W), where ∀𝜏∊W; 

                 V’(𝜏),                  𝜏∊W\B 

 T(𝜏)= 

                 V(𝜏)∩S(𝜏),          𝜏∊W∩B 

Thus, 

 

               O’(𝜏),                                                𝜏∊(W\Z)\B=W∩B’∩Z’ 

               O’(𝜏) ∪H’(𝜏),                                     𝜏∊(W∩Z)\B=W∩B’∩Z 

               O(𝜏) ∩L’(𝜏),                                      𝜏∊(W\Z)∩(B\Z)=W∩B∩Z’ 

T(𝜏)=       O(𝜏) ∩［L’(𝜏) ∩H(𝜏)],                      𝜏∊(W\Z)∩(B∩Z)=∅ 

              ［O(𝜏)∩H(𝜏)］∩L’(𝜏),                       𝜏∊(W∩Z)∩(B\Z)=∅ 

              ［O(𝜏) ∩H(𝜏)］∩［L’(𝜏) ∩H(𝜏)],       𝜏∊(W∩Z)∩(B∩Z)=W∩B∩Z       

It is seen that N=T. 
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6)［(O,A)

＊
~
\

 (L,B)］
~
λ (H,Z)=[(O,W)

~
λ (H,Z)］

＊

~
∩
［(L,B)  

＊

~
＊

 (H,Z) )] whereW∩B’∩Z=∅. 

Proof: Let first handle the left hand side of the equality and let (O,W) 

＊
~
\

 (L,B)=(M,W), 

where ∀𝜏∊W; 

                  O’(𝜏),               𝜏∊W\B 

  M(𝜏)= 

                  O(𝜏) ∩L’(𝜏),      𝜏∊W∩B 

Let (M,W) λ̃ (H,Z)=(N,W), where ∀𝜏∊W; 

                M(𝜏),                  𝜏∊W\Z     

N(𝜏)= 

                M(𝜏) ∪H’(𝜏),      𝜏∊W∩Z    

Thus, 

               O’(𝜏),                               𝜏∊(W\B)\Z=W∩B’∩Z’ 

N(𝜏)=      O(𝜏) ∩L’(𝜏),                    𝜏∊(W∩B)\Z=W∩B∩Z’ 

               O’(𝜏) ∪H’(𝜏)                     𝜏∊(W\B)∩Z=W∩B’∩Z 

             ［O(𝜏) ∩L’(𝜏)] ∪H’(𝜏)       𝜏∊(W∩B)∩Z=W∩B∩Z  

Now let handle the left hand side of the equality:［(O,W)  λ̃  (H,Z)］
＊

~
∩
［(L,B) 

＊

~
＊

  (H,C］ 

Let  (O,W) λ̃  (H,Z)=(V,W), where ∀𝜏∊W; 

 

               O(𝜏),                    𝜏∊W\Z 

 

V(𝜏)= 

               O(𝜏) ∪H’(𝜏),          𝜏∊W∩Z 

Suppose that (L,B) 
＊

~
＊

(H,Z)=(S,B), where ∀𝜏∊B; 

                L’(𝜏),                      𝜏∊ B\Z 

S(𝜏)= 

                L’(𝜏) ∪H’(𝜏),            𝜏∊B∩Z 
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Let (V,W)
＊

~
∩

 (S,B)=(T,W), where ∀𝜏∊W; 

                 V’(𝜏),                   𝜏∊W\B 

 T(𝜏)= 

                 V(𝜏)∩S(𝜏),          𝜏∊W∩B 

Thus, 

               O’(𝜏),                                              𝜏∊(W\Z)\B=W∩B’∩Z’ 

               O’(𝜏) ∩H(𝜏),                                    𝜏∊(W∩Z)\B=W∩B’∩Z 

               O(𝜏) ∩L’(𝜏),                                    𝜏∊(W\Z)∩(B\Z)=W∩B∩Z’ 

T(𝜏)=       O(𝜏) ∩［L’(𝜏) ∪H’(𝜏)],                   𝜏∊(W\Z)∩(B∩Z)=∅ 

             ［O(𝜏)∪H’(𝜏)］∩L’(𝜏),                      𝜏∊(W∩Z)∩(B\Z)=∅ 

             ［O(𝜏) ∪H’(𝜏)］∩［L’(𝜏) ∪H’(𝜏)],    𝜏∊(W∩Z)∩(B∩Z)=W∩B∩Z         

It is seen that N=T. 

 

3.1.2. Distribution of soft binary piecewise operations over complementary soft binary 

piecewise lambda (𝛌) operation: 

1) (O,W) ∩̃[(L,B) 
＊
~
𝛌

 (H,Z)]=[(O,W) 
~
 ∩ (L,B)] ∪̃ [(O, W) 

~
 \(H,Z)],   where W∩B∩Z’ =∅ 

 Proof: Let first handle the left hand side of the equality and let (L,B) 
＊
~
𝛌

 (H,Z)=(M,B), 

where ∀𝜏∊B; 

 

                 L’(𝜏),                 𝜏∊B\Z 

 M(𝜏)= 

                 L(𝜏) ∪H’(𝜏),      𝜏∊B∩Z 

Let (O,W) ∩̃(M,B)=(N,W), where  ∀𝜏∊W; 

 

                 O(𝜏),                 𝜏∊W\B       

 N(𝜏)= 

                 O(𝜏) ∩M(𝜏),      𝜏∊W∩B           
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Thus, 

                 O(𝜏),                                𝜏∊W\B  

 N(𝜏)=       O(𝜏) ∩L’(𝜏),                   𝜏∊W∩(B\Z)= W∩B∩Z’              

                O(𝜏) ∩［(L(𝜏) ∪H’(𝜏)],   𝜏∊W∩(B∩Z)= W∩B∩Z       

Now let handle the left hand side of the equality: ［(O,W) 
~
 ∩ (L,B)］∪̃［(O,W) 

~
 \ (H,Z)],  

Let (O,W) 
~
 ∩  (L,B)=(V,W), where ∀𝜏∊W; 

 

               O(𝜏),                      𝜏∊W\B 

V(𝜏)= 

               O(𝜏) ∩L(𝜏),          𝜏∊W∩B  

 

Suppose that (O,W) \̃ (H,Z)=(S,W), where ∀𝜏∊W; 

                O(𝜏),                     𝜏∊W\Z 

S(𝜏)= 

                O(𝜏) ∩H’(𝜏),          𝜏∊W∩Z 

Let (V,W) ∪̃(S,W)=(T,W)     ∀𝜏∊W; 

                 V(𝜏),                      𝜏∊W\W=∅ 

T(𝜏)= 

                 V(𝜏) ∪S(𝜏),            𝜏∊W∩W     

Thus, 

               O(𝜏) ∪O(𝜏),                                     𝜏∊(W\B) ∩(W\Z)=W∩B’∩Z’ 

  T(𝜏)=    O(𝜏) ∪[(O(𝜏)∩ H’(𝜏)],                     𝜏∊(W\B) ∩(W∩Z)=W∩B’∩Z 

               [(O(𝜏) ∩L(𝜏)] ∪ O(𝜏),                      𝜏∊(W∩B) ∩(W\Z)=W∩B∩Z’ 

               [(O(𝜏) ∩ L(𝜏)] ∪ [(O(𝜏) ∩ H’(𝜏)],    𝜏∊(W∩B) ∩(W∩Z)=W∩B∩Z             

Thus, 

 

               O(𝜏)                                                  𝜏∊(W\B) ∩(W\Z)=W∩B’∩Z’ 

  T(𝜏)=     O(𝜏),                                                𝜏∊(W\B) ∩(W∩Z)=W∩B’∩Z 

                O(𝜏),                                                𝜏∊(W∩B) ∩(W\Z)=W∩B∩Z’ 

               [(O(𝜏) ∩ L(𝜏)] ∪ [(O(𝜏) ∩ H’(𝜏)],    𝜏∊(W∩B) ∩(W∩Z)=W∩B∩Z             

Here let handle 𝜏∊W\B in the first equation. Since W\B= W∩B’, if 𝜏∊B’, then 𝜏∊Z\B or 

𝜏∊(B∪Z)’. Hence, if 𝜏∊W\B, 𝜏∊W∩B’∩Z’ or 𝜏∊W∩B’∩Z. Thus, it is seen that N=T. 
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2)［(O,W)
＊
~
𝛌

 (L,B)］∩̃(H,Z)=［(O,W)∩̃(H,Z)］
＊
~
∪
［(L,B) 

＊
~
γ

(H,Z)],where W∩B’∩Z=∅. 

Proof: Let first handle the left hand side of the equality and let (O,W) 
＊
~
𝛌

 (L,B)=(M,W), 

where ∀𝜏∊W; 

 

                  O’(𝜏),               𝜏∊W\B 

  M(𝜏)= 

                  O(𝜏) ∪L’(𝜏),      𝜏∊W∩B 

Let (M,W) ∩̃ (H,Z)=(N,W), where ∀𝜏∊W; 

                M(𝜏),                 𝜏∊W\Z     

N(𝜏)= 

                M(𝜏) ∩H(𝜏),      𝜏∊W∩Z    

Thus, 

               O’(𝜏),                             𝜏∊(W\B)\Z=W∩B’∩Z’ 

N(𝜏)=      O(𝜏) ∪L’(𝜏),                  𝜏∊(W∩B)\Z=W∩B∩Z’ 

               O’(𝜏) ∩H(𝜏)                    𝜏∊(W\B)∩Z=W∩B’∩Z 

             ［O(𝜏) ∪L’(𝜏)] ∩H(𝜏)       𝜏∊(W∩B)∩Z=W∩B∩Z   

Now let hndle the left hand side of the equality:［(O,W)  ∩̃ (H,Z)］
＊
~
∪
［(L,B) 

＊
~
γ

(H,Z)］ 

Let  (O,W) ∩̃  (H,Z)=(V,W), where ∀𝜏∊W; 

               O(𝜏),                    𝜏∊W\Z 

 

V(𝜏)= 

               O(𝜏) ∩H(𝜏),          𝜏∊W∩Z 

Suppose that (L,B) 
＊
~
γ

(H,Z)=(S,B), where ∀𝜏∊B; 

                L’(𝜏),                      𝜏∊ B\Z 

S(𝜏)= 

                L’(𝜏) ∩H(𝜏),            𝜏∊B∩Z 
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Let (V,W)
＊
~
∪

 (S,B)=(T,W), where ∀𝜏∊W; 

                 V’(𝜏),                   𝜏∊W\B 

 T(𝜏)= 

                 V(𝜏)∪S(𝜏),           𝜏∊W∩B 

Thus, 

               O’(𝜏),                                               𝜏∊(W\Z)\B=W∩B’∩Z’ 

               O’(𝜏) ∪H’(𝜏),                                    𝜏∊(W∩Z)\B=W∩B’∩Z 

               O(𝜏) ∪L’(𝜏),                                     𝜏∊(W\Z)∩(B\Z)=W∩B∩Z’ 

T(𝜏)=       O(𝜏) ∪［L’(𝜏) ∩H(𝜏)],                    𝜏∊(W\Z)∩(B∩Z)=∅ 

             ［O(𝜏)∩H(𝜏)］∪L’(𝜏),                       𝜏∊(W∩Z)∩(B\Z)=∅ 

             ［O(𝜏) ∩H(𝜏)］∪［L’(𝜏) ∩H(𝜏)],      𝜏∊(W∩Z)∩(B∩Z)=W∩B∩Z        

It is seen that N=T. 

3)  (O,W) λ̃［(L,B) 
＊
~
λ

 (H,Z)]=[(O,W) λ̃ (L,B)］∩̃［(O,W) ∪̃ (H,Z)], where W∩B∩Z’ =∅ 

Proof: Let first handle the left hand side of the equality and let (L,B) 
＊
~
λ

 (H,Z)=(M,B), 

where ∀𝜏∊B;  

                 L’(𝜏),               𝜏∊B\Z 

 M(𝜏)=  

                 L(𝜏) ∪H’(𝜏),      𝜏∊B∩Z 

Let (O,W) λ̃ (M,B)=(N,W), where  ∀𝜏∊W; 

                 O(𝜏),                   𝜏∊W\B       

 N(𝜏)= 

                  O(𝜏) ∪M’(𝜏),      𝜏∊W∩B           

Thus, 

                 O(𝜏),                               𝜏∊W\B  

 N(𝜏)=       O(𝜏) ∪L(𝜏),                     𝜏∊W∩(B\Z)= W∩B∩Z’              

                O(𝜏) ∪［(L’(𝜏) ∩H(𝜏)],   𝜏∊W∩(B∩Z)= W∩B∩Z        

Now let handle the left hand side of the equality: ［(O,W) λ̃ (L,B)］∩̃［(O,W) ∪̃(H,Z)]. 
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Let (O,W) λ̃  (L,B)=(V,W), where ∀𝜏∊W; 

               O(𝜏),                      𝜏∊W\B 

V(𝜏)=  

               O(𝜏) ∪L’(𝜏),          𝜏∊W∩B  

Suppose that (O,W) ∪̃(H,Z)=(S,W), where ∀𝜏∊W; 

                O(𝜏),                     𝜏∊W\Z 

S(𝜏)= 

                O(𝜏) ∪H(𝜏),            𝜏∊W∩Z 

Let (V,W) ∩̃(S,W)=(T,W)     ∀𝜏∊W; 

                 V(𝜏),                     𝜏∊W\W=∅ 

T(𝜏)= 

                 V(𝜏) ∩S(𝜏),           𝜏∊W∩W     

Thus, 

               O(𝜏) ∩O(𝜏),                                  𝜏∊(W\B) ∩(W\Z)=W∩B’∩Z’ 

  T(𝜏)=    O(𝜏) ∩[(O(𝜏)∪ H(𝜏)],                     𝜏∊(W\B) ∩(W∩Z)=W∩B’∩Z 

               [(O(𝜏) ∪L’(𝜏)] ∩ O(𝜏),                  𝜏∊(W∩B) ∩(W\Z)=W∩B∩Z’ 

               [(O(𝜏) ∪ L’(𝜏)] ∩ [(O(𝜏) ∪H(𝜏)],    𝜏∊(W∩B) ∩(W∩Z)=W∩B∩Z             

Thus, 

               O(𝜏)                                                𝜏∊(W\B) ∩(W\Z)=W∩B’∩Z’ 

  T(𝜏)=     O(𝜏),                                              𝜏∊(W\B) ∩(W∩Z)=W∩B’∩Z 

                O(𝜏),                                              𝜏∊(W∩B) ∩(W\Z)=W∩B∩Z’ 

               [(O(𝜏) ∪ L’(𝜏)] ∩ [(O(𝜏) ∪ H(𝜏)],    𝜏∊(W∩B) ∩(W∩Z)=W∩B∩Z             

Since W\B= W∩B’, if 𝜏∊B’, then 𝜏∊Z\B or 𝜏∊(B∪Z)’. Hence, if 𝜏∊W\B, 𝜏∊W∩B’∩Z’ or 

𝜏∊W∩B’∩Z. Thus, it is seen that N=T.  

4)  [(O,W) 
＊
~
λ

(L,B)］λ̃ (H,Z)=［(O,W) λ̃ (H,Z)］
＊
~
∪
［(L,B) 

＊

~
＊

 (H,Z)] where W∩B’∩Z=∅. 

Proof: Let first handle the left hand side of the equality and let (O,W) 
＊
~
λ

 ( Ö,B)=(M,W), 

where ∀𝜏∊W; 

                  O’(𝜏),               𝜏∊W\B 

  M(𝜏)= 

                  O(𝜏) ∪L’(𝜏),      𝜏∊W∩B 



SEZGİN ve KÖKÇÜ /GBAD, 2023, 12(2), 114-137                                                                                     132 

 

Let (M,W) λ̃ (H,Z)=(N,W), where ∀𝜏∊W; 

                M(𝜏),                  𝜏∊W\Z    

N(𝜏)= 

                M(𝜏) ∪H’(𝜏),      𝜏∊W∩Z    

Thus, 

               O’(𝜏),                                𝜏∊(W\B)\Z=W∩B’∩Z’ 

N(𝜏)=      O(𝜏) ∪L’(𝜏),                     𝜏∊(W∩B)\Z=W∩B∩Z’ 

               O’(𝜏) ∪H’(𝜏)                      𝜏∊(W\B)∩Z=W∩B’∩Z 

             ［O(𝜏) ∪L’(𝜏)] ∪H’(𝜏)       𝜏∊(W∩B)∩Z=W∩B∩Z  

Now let handle the left hand side of the equality:［(O,W)  λ̃  (H,Z)］
＊

~
∪
［(L,B) 

＊

~
＊

 (H,Z)]. 

Let  (O,W) λ̃  (H,Z)=(V,W), where ∀𝜏∊W; 

               O(𝜏),                    𝜏∊W\Z 

V(𝜏)= 

               O(𝜏) ∪H’(𝜏),        𝜏∊W∩Z 

Suppose that (L,B) 
＊

~
＊

(H,Z)=(S,B), where ∀𝜏∊B; 

                L’(𝜏),                      𝜏∊B\Z 

S(𝜏)= 

                L’(𝜏) ∪H’(𝜏),            𝜏∊B∩Z 

Let (V,W)
＊
~
∪

 (S,B)=(T,W), where ∀𝜏∊W; 

                 V’(𝜏),                   𝜏∊W\B 

 T(𝜏)= 

                 V(𝜏)∪S(𝜏),            𝜏∊W∩B 

Thus, 

                 O’(𝜏),                                                𝜏∊(W\Z)\B=W∩B’∩Z’ 

                 O’(𝜏) ∩H(𝜏),                                      𝜏∊(W∩Z)\B=W∩B’∩Z 

                 O(𝜏) ∪L’(𝜏),                                      𝜏∊(W\Z)∩(B\Z)=W∩B∩Z’ 

T(𝜏)=       O(𝜏) ∪［L’(𝜏) ∪H’(𝜏)],                    𝜏∊(W\Z)∩(B∩Z)=∅ 

              ［O(𝜏)∪H’(𝜏)］∪L’(𝜏),                      𝜏∊(W∩Z)∩(B\Z)=∅ 

               ［O(𝜏) ∪H’(𝜏)］∪［L’(𝜏) ∪H’(𝜏)],   𝜏∊(W∩Z)∩(B∩Z)=W∩B∩Z         
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It is seen that N=T. 

5)［(O,W) 
＊
~
λ

 (L,B)］\̃(H,Z)=［(O,W)\̃(H,Z)］
＊
~
∪
［(L,B) 

＊
~
θ

(H,Z)], where W∩B’∩Z=∅. 

Proof: Let first handle the left hand side of the equality and let (O,W) 
＊
~
λ

 ( Ö,B)=(M,W), 

where ∀𝜏∊W; 

                  O’(𝜏),                 𝜏∊W\B 

  M(𝜏)= 

                  O(𝜏) ∪L’(𝜏),      𝜏∊W∩B 

Let (M,W) \̃ (H,Z)=(N,W), where ∀𝜏∊W; 

                M(𝜏),                 𝜏∊W\Z     

N(𝜏)= 

                M(𝜏) ∩H’(𝜏),      𝜏∊W∩Z    

Thus, 

               O’(𝜏),                              𝜏∊(W\B)\Z=W∩B’∩Z’ 

N(𝜏)=      O(𝜏) ∪L’(𝜏),                  𝜏∊(W∩B)\Z=W∩B∩Z’ 

               O’(𝜏) ∩H’(𝜏)                    𝜏∊(W\B)∩Z=W∩B’∩Z 

             ［O(𝜏) ∪L’(𝜏)] ∩H’(𝜏)      𝜏∊(W∩B)∩Z=W∩B∩Z   

Now let handle the left hand side of the equality:［(O,W)  \̃ (H,Z)］
＊
~
∪
［(L,B) 

＊
~
θ

(H,Z)］ 

Let  (O,W) \̃  (H,Z)=(V,W), where ∀𝜏∊W; 

               O(𝜏),                    𝜏∊W\Z 

V(𝜏)= 

               O(𝜏) ∩H’(𝜏),         𝜏∊W∩Z 

Suppose that (L,B) 
＊
~
θ

(H,Z)=(S,B), where ∀𝜏∊B; 

                L’(𝜏),                      𝜏∊ B\Z 

S(𝜏)= 

                L’(𝜏) ∩H’(𝜏),           𝜏∊B∩Z 

Let (V,W)
＊
~
∪

 (S,B)=(T,W), where ∀𝜏∊W; 
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                 V’(𝜏),                   𝜏∊W\B 

 T(𝜏)= 

                 V(𝜏)∪S(𝜏),           𝜏∊W∩B 

Thus, 

               O’(𝜏),                                              𝜏∊(W\Z)\B=W∩B’∩Z’ 

               O’(𝜏) ∪H(𝜏),                                    𝜏∊(W∩Z)\B=W∩B’∩Z 

               O(𝜏) ∪L’(𝜏),                                    𝜏∊(W\Z)∩(B\Z)=W∩B∩Z’ 

T(𝜏)=       O(𝜏) ∪［L’(𝜏) ∩H’(𝜏)],                  𝜏∊(W\Z)∩(B∩Z)=∅ 

              [O(𝜏)∩H’(𝜏)］∪L’(𝜏),                       𝜏∊(W∩Z)∩(B\Z)=∅ 

              [O(𝜏) ∩H’(𝜏)］∪［L’(𝜏) ∩H’(𝜏)],    𝜏∊(W∩Z)∩(B∩Z)=W∩B∩Z          

It is seen that N=T. 

6)［(O,W)
＊
~
λ

 (L,B)］
~
∪(H,Z)= [(O,W) 

~
∪ (H,Z)］

＊
~
∪

[(L,B) 
＊
~
+

 (H,Z)] where W∩B’∩Z=∅. 

Proof: Let first handle the left hand side of the equality and let (O,W) 
＊
~
∪

 ( Ö,B)=(M,W), 

where ∀𝜏∊W; 

                  O’(𝜏),                 𝜏∊W\B 

  M(𝜏)= 

                  O(𝜏) ∪L’(𝜏),      𝜏∊W∩B 

Let (M,W) ∪̃ (H,Z)=(N,W), where ∀𝜏∊W; 

                M(𝜏),                  𝜏∊W\Z     

N(𝜏)= 

                M(𝜏) ∪H(𝜏),      𝜏∊W∩Z    

Thus, 

               O’(𝜏),                             𝜏∊(W\B)\Z=W∩B’∩Z’ 

N(𝜏)=      O(𝜏) ∪L’(𝜏),                  𝜏∊(W∩B)\Z=W∩B∩Z’ 

               O’(𝜏) ∪H(𝜏)                    𝜏∊(W\B)∩Z=W∩B’∩Z 

             ［O(𝜏) ∪L’(𝜏)] ∪H(𝜏)      𝜏∊(W∩B)∩Z=W∩B∩Z   

Now let handle the left hand side of the equality:［(O,W)  
~
∪ (H,Z)］

＊
~
∪
［(L,B) 

＊
~
+

 (H,Z)］ 
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Let  (O,W) 
~
∪ (H,Z)=(V,W), where ∀𝜏∊W; 

               O(𝜏),                    𝜏∊W\Z 

V(𝜏)= 

               O(𝜏) ∪H(𝜏),          𝜏∊W∩Z 

Suppose that (L,B) 
＊
~
+

 (H,Z)=(S,B), where ∀𝜏∊B; 

                L’(𝜏),                      𝜏∊B\Z 

S(𝜏)= 

                L’(𝜏) ∪H(𝜏),            𝜏∊B∩Z 

Let (V,W)
＊
~
∪

 (S,B)=(T,W), where ∀𝜏∊W; 

                 V’(𝜏),                   𝜏∊W\B 

 T(𝜏)= 

                 V(𝜏)∪S(𝜏),          𝜏∊W∩B 

Thus, 

               O’(𝜏),                                           𝜏∊(W\Z)\B=W∩B’∩Z’ 

               O’(𝜏) ∩H’(𝜏),                                𝜏∊(W∩Z)\B=W∩B’∩Z 

               O(𝜏) ∪L’(𝜏),                                 𝜏∊(W\Z)∩(B\Z)=W∩B∩Z’ 

T(𝜏)=      O(𝜏) ∪［L’(𝜏) ∪H(𝜏)],                 𝜏∊(W\Z)∩(B∩Z)=∅ 

              [O(𝜏)∪H(𝜏)］∪L’(𝜏),                    𝜏∊(W∩Z)∩(B\Z)=∅ 

              [O(𝜏) ∪H(𝜏)］∪［L’(𝜏) ∪H(𝜏)],   𝜏∊(W∩Z)∩(B∩Z)=W∩B∩Z         

It is seen that N=T. 

 

4. Conclusion  

In this paper, we explore more about complementary soft binary piecewise plus and lambda 

operation by examining the relationships between these soft set operation and soft binary 

piecewise operations.  We contribute to the soft set literature by obtaining the distributions 

of soft binary piecewise operations over complementary soft binary piecewise difference and 

lambda operations. This is a theoretical study for soft sets and some future studies may 

continue by examining the distributions of soft binary piecewise operations over other 

complementary soft binary piecewise operations. Moreover, since soft sets are a powerful 
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mathematical tool for detecting insecure objects, this work allows researchers to propose new 

encryption or decision methods based on soft sets. Also, the study of soft algebraic structures 

can be redone in terms of algebraic properties by the operations defined in this article. 
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