
Acta Infologica
acin 2023, 7 (2), 253–266

DOI: 10.26650/acin.1258719

Research Article / Araştırma Makalesi

Converting Image Files to LaTeX Format Using Computer Vision, Natural
Language Processing, and Machine Learning
Resim Formatındaki Dokümanların Bilgisayarlı Görü, Doğal Dil İşleme ve Makine
Öğrenmesi Kullanılarak Latex Formatına Dönüştürülmesi

Murat Kazanç1 , Tolga Ensari2 , Mustafa Dağtekin3

1(M.Sc.), Istanbul University-Cerrahpasa, Depart-
ment of Computer Engineering, Istanbul, Turkiye
2(Assist. Prof.), Arkansas Tech University, College of
Engineering & Applied Science, Department of Com-
puter and Information Science, Arkansas, USA
3(Assist. Prof.), Istanbul University-Cerrahpasa, De-
partment of Computer Engineering, Istanbul, Turkiye

Corresponding author : Mustafa DAĞTEKİN
E-mail : dagtekin@iuc.edu.tr

Submitted : 01.03.2023
Revision Requested : 24.08.2023
Last Revision Received : 31.08.2023
Accepted : 19.09.2023
Published Online : 26.10.2023

This article is licensed un-
der a Creative Commons Attribution-
NonCommercial 4.0 International Li-
cense (CC BY-NC 4.0)

ABSTRACT
A few decades ago, people used printed resources such as books and magazines to
learn. With the development of technology, digital documents have replaced printed
resources. These documents can occur in the form of images or various text formats.
Many different applications exist for preparing digital documents, one of these being
LaTeX. LaTeX is a document preparation system and typesetting software that is used
especially in the field of scientific publications and mathematics for preparing high
quality documents. When preparing a document using LaTeX, the content is made
ready using a markup language, which creates difficulties for some users. However,
one of the main advantages of using the LaTeX system is that it distinguishes the doc-
ument’s content from its formatting. Once the content is created, the formatting can be
easily replaced. Generating LaTeX code from an image-formatted document requires
both the use of computer vision and NLP. This study discovers the boundaries (blocks)
of the places where text, tables, and figures are located on an image before making
a text classification using the natural language processing methods of these blocks.
The next stage of the study determines the reading order to enable meaningful flow.
The final stage of the study produces a LaTeX code using the obtained information.
Keywords: Computer vision, text classification, reading order, machine learning

ÖZ
Birkaç on yıl önce insanlar bilgi edinmek için kitap ve dergi gibi basılı kaynakları
kullanmaktaydılar. Teknolojinin gelişmesi ile basılı kaynakların yerini dĳital dokü-
manlar almıştır. Bu dokümanlar görüntü biçiminde veya farklı metin formatları şek-
linde olabilmektedir. Dĳital dokümanları hazırlamak için birçok farklı uygulama
bulunmaktadır. Bunlardan bir tanesi LaTex’ tir. LaTex doküman hazırlama sistemi
ve dizgi yazılımıdır. Yüksek kalitede dokümanlar hazırlamak için özellikle bil-
imsel yayınlar ve matematik alanında kullanılmaktadır. LaTex ile doküman hazır-
lanırken içerik bir işaretleme dili kullanılarak hazırlanılmaktadır. Bu durum bazı
kullanıcılar için bir zorluk oluşturmaktadır. Ancak LaTex sistemini kullanmanın ana
avantajlarından biri doküman içeriğini biçimlendirmeden ayırmasıdır. Bir kere içerik
oluşturulduktan sonra biçimlendirme kolaylıkla değiştirilebilmektedir. Görüntü for-
matındaki bir dokümandan LaTex kodunun üretilmesi bilgisayarlı görü ve doğal dil
işleme alanlarının birlikte kullanılmasını gerektirmektedir. Bu çalışmada öncelikle
görüntü üzerinde metin, tablo ve şekillerin bulunduğu yerlerin sınırları (bloklar) tespit
edilmiştir. Sonrasında bulunan bu blokların doğal dil işleme metotları kullanılarak
metin sınıflama yapılmıştır. Bir sonraki aşamada anlam akışının bozulmaması için
okuma sırası tespit edilmiştir. Son aşamada elde edilen bilgiler kullanılarak LaTex
kodu üretilmiştir.
Anahtar Kelimeler: Bilgisayarlı görü, metin sınıflama, okuma sırası, makine öğren-
mesi

253

http://orcid.org/0000-0002-8405-0181
http://orcid.org/0000-0003-0896-3058
http://orcid.org/0000-0002-0797-9392

Acta Infologica

1. INTRODUCTION
A few decades ago, people used such resources as books and magazines to obtain information. With the current

developments in technology and the widespread use of the Internet, digital documents are used more often than
printed documents. Different applications are also available for preparing digital documents. One such tool is LaTeX, a
document preparation system and typesetting software (CTAN Team). LaTeX is used to create high-quality documents,
particularly in the fields of science and mathematics. When creating a document using LaTeX, one writes the contents
of the document in a plain text file using a simple markup language to indicate the structure of the document (e.g.,
headings, paragraphs, lists) and to include such things as mathematical equations and citations. This plain text file is
then processed by the LaTeX software, which converts it into a typeset document in one’s chosen format (e.g., PDF).
One of the main advantages of using LaTeX is that it separates the contents of a document from its formatting. This
means one can focus on writing the content and let LaTeX handle the document’s typesetting details. This makes
creating consistent, high-quality documents easier and allows facilitates later changes. The production of LaTeX code
from an image of a document is obtainable using computer vision and natural language processing (NLP).

This study focuses on academic publications. Due to their structure, the first page of academic publications contains
sections such as the title, author information, abstract, and keywords. The middle pages of a publication contain content
groups such as headings, paragraphs, tables, figures, and lists in single- or double-column format. The last page or
pages of a publication contain a unique reference list. In order for a digital academic publication to be analyzed, these
content groups should initially be found in the digital document as a content block, and then the content should be
parsed as text or figures. The contents of the blocks identified as text should be classified according to the type of the
page (left justified, centered, or right justified). In addition, in order to not disrupt the flow of a digital publication, the
reading order must also be correctly identified. LaTeX code should be created in the final stage, using all the information
collected so far.

This study does not include certain features within its scope, such as font type and font size, which should be
represented in a digital document. In addition, converting the equation and table of content groups of a digital
document into LaTeX code requires a completely different study on the subject. The operations performed in this study
will prepare a starting point and an expandable working basis for future studies.

2. Literature Review
LaTeX is a document preparation system. Widely preferred word processing programs such as Microsoft Word and

Libre Office Writer can be expressed as follows: What you see is what you get (Klatsky, 2003). An attribute of these
programs is that they allow the user to display a document on a computer monitor in exactly the format the document
will take when printed. With LaTeX, the content of the document is written in plain text. The desired formatting is
made using LaTeX codes, with the result displayed after compilation. In this respect, LaTeX can be compared to the
Hypertext Markup Language (HTML) used to develop web pages.

LaTeX was founded in 1978 by Donald E. Knuth, and the development process has been non-stop ever since (CTAN
Team). The starting point was the insufficient print quality of the documents. Over the years, LaTeX has been adopted
by academic circles in particular for writing books and articles and continues to be developed as an open-source code
today. The main reasons why LATEX is preferred are as follows: It can be published professionally, it is a standard, it
can be used across platforms, and it is constantly evolving and expanding due to its open-source nature.

In order to convert a document’s image file to LaTeX code, the first thing to do is to have blocks such as text or shapes
on the image. One of the libraries developed for this process is LayoutParser (Shen et al., 2021). Using deep learning
methods, this open-source library facilitates digital document analysis. Another feature that makes LayoutParser stand
out is its pre-trained artificial neural network models. These are PubLayNet for academic documents (Zhong et al.,
2019), PRImA for journals and academic reports (PRImA), and TableBank for business and academic documents (Li
et al., 2019). These pre-trained models have common classes, as well as their own specialized classes. For example, the
TableBank pre-trained model finds only tables. LayoutParser also has an optical character recognition (OCR) feature
that uses the Tesseract library (Wang et al., 2021).

Another study related to the discovery of blocks in pictures involves Layout (Y. Xu et al., 2020). That study stated
that in order to classify the blocks found in the picture, the texts contained in the blocks should be taken into account in
addition to their formal characteristics. For example, the bidirectional encoder representations for transformers (BERT)
is a pre-trained NLP models that is used to understand texts.

For the purpose of finding blocks, two deep learning models have been used for segmentation (C. Xu et al., 2021).
The first deep learning model determined the locations of the blocks using Mask region-based convolutional neural

254

Kazanc, M., Ensari, T., Dagtekin, M., Converting Image Files to LaTeX Format Using Computer Vision...

networks (R-CNN). The second deep learning model uses feature pyramid networks (FPNs) to perceive objects at
different scales, and the blocks are classified as a result of the collaboration of these two deep learning models.

Clark & Divvala (2016) claimed that shapes are important in academic publications with a different focus, and their
main goal was to identify pictures and the explanatory text underneath them. Instead of using a deep learning model in
the development stage, they developed OCR and a rules-based detection method.

Deivalakshmi et al. (2013) proposed an algorithm-based system for detecting text and non-text blocks in a digital
document. Horizontal and vertical lines are detected and removed. The blocks are then revealed by grouping text or
non-text content using the dilation method. Pictures have different texture properties than text. Texture properties occur
with gray-level co-occurrence matrices (GLCMs) in the found blocks. A GLCM is able to work on grayscale images
by creating a matrix using just the position numbers of pixels in the vertical, horizontal, and diagonal directions for
every pixel in the entire image or in divisions. The next stage classifies the blocks as text or non-text using the k-means
clustering algorithm.

Kavasidis et al. (2019) used convolutional neural networks (CNNs) to detect tables and figures in digital documents.
Nowadays, a rapid increase in data production is taking place that continues to accelerate. At this point, no person or
group of people can monitor this information flow. Instead of trying to get information in digital documents with NLP
methods, the solution to this problem is to conclude that the tables and figures in academic publications provide more
information than the textual contents of the document.

Deng et al. (2019) used the encoder-decoder model was used to detect tables in documents. They extracted the
feature map of the image using CNN in the encoder model. Meanwhile, the decoder model detects table cells using the
attention mechanism and the standard long- and short-term memory (LSTM) model.

One of the strongest points of LaTeX involves equations. Finding equations in a picture and expressing them as
LaTeX code would be quite convenient. To perform this process, Wang and Liu, (2021) again used the encoder-decoder
model, extracting the feature map using CNN as the encoder. A LaTeX code block was produced with an LSTM using
a soft attention mechanism as a decoder.

Pang et al.’s (2021) study on converting equations to LaTeX code used a transformer model instead of the encoder-
decoder models most researchers use. The main reason for this was that the encoder-decoder model cannot know
the entire context and hierarchical positions of the symbols. The study consisted of three stages: extracting the entire
context, using a transformer model that reveals the dependencies between location information and symbols, and using
a mask-based attention mechanism decoder to produce LaTeX code.

Another process performed in extracting information from digital documents is to determine the fonts of the texts.
This feature provides structured information about the document rather than the content. To do this, Wang et al.’s
(2015) study used a stacked convolutional autoencoder (SCAE), a special type of CNN.

Ding et al. (2019) conducted on OCR systems, stating that OCR models using CNN and LSTM achieved a high
accuracy rate. However, the model was said to occupy a large amount of disk space and to have a high computational
cost. The method they proposed was to reduce the LSTM side of the model without making changes to the feature
extraction process. Finally, they used a compression method to reduce the size of the model.

Safnuk and Hu’s (2018) research was conducted on PDF files with the goal of obtaining LaTeX code by reverse
engineering the PDF files produced with LaTeX code. A deep learning model was used to understand the relationships
in the metadata of the source PDF file and to produce appropriate codes. The LaTeX code of the model output a digital
document that had been successfully reconstructed.

Apart from the literature study, real-world applications have also been examined. Web applications are found that
convert word processing document formats (e.g., docx) to LaTeX code. These applications contain text information in
XML format in the source file as well as font, font size, and all visual features related to the text. The main difficulty
in converting a document’s image file to LaTeX code is the availability of these features. Again, by performing OCR
on the digital document provided by different applications, all the found characters are placed in their positions on the
page with fixed coordinates. These studies were unable to produce a code similar to LaTeX code written by a human.

3. Method
3.1. Dataset
The current study has found no conducted stud to have a suitable dataset. For this reason, 103 academic publications

in PDF format were accessed on the web environment. These were then used during the literature search on the subject.
The PDFs collected for training the system under development were first converted to an image file so that each

page is a separate image. The information then needs to be extracted from the pictures. This information involves the

255

Acta Infologica

location of the text, title, lists, tables, and image blocks, as well as the text contained in the blocks. In order to find the
classes of the blocks, the study uses the LayoutParser library (Shen et al., 2021) instead of labeling them individually.
This library allows the location and classes of the blocks in each image to be found and recorded in CSV format in
accordance with the segmentation system to be developed later using OCR as the last operation on the texts the blocks
contain. Table 1 shows the dataset sample records. In order to create the data set, 11,965 blocks were extracted from
1,141 images.

Table 1. Dataset Sample Recordss

 5

document provided by different applications, all the found characters are placed in their positions on the page with fixed
coordinates. These studies were unable to produce a code similar to LaTeX code written by a human.

3. Method
3.1. Dataset

The current study has found no conducted stud to have a suitable dataset. For this reason, 103 academic publications
in PDF format were accessed on the web environment. These were then used during the literature search on the subject.

The PDFs collected for training the system under development were first converted to an image file so that each
page is a separate image. The information then needs to be extracted from the pictures. This information involves the location
of the text, title, lists, tables, and image blocks, as well as the text contained in the blocks. In order to find the classes of the
blocks, the study uses the LayoutParser library (Shen et al., 2021) instead of labeling them individually. This library allows
the location and classes of the blocks in each image to be found and recorded in CSV format in accordance with the
segmentation system to be developed later using OCR as the last operation on the texts the blocks contain. Table 1 shows the
dataset sample records. In order to create the data set, 11,965 blocks were extracted from 1,141 images.

Table 1.
Dataset Sample Records

Index Box Index Box X1 Box X2 Box Y1 Box Y2 Box Text Box Type Page Size Page Number

200 10 951 1574 333 1419 Intelligent Multimedia... List 2200x1700 3

201 0 225 1440 1792 1848 Fig. 2. Results: a) Input... Text 2200x1700 4

202 2 219 1450 196 1742 fay\n\nie\n\ni f\n\n \n\n... Figure 2200x1700 4

203 3 226 843 215 1375 RT ee aa ates caret\n\... Figure 2200x1700 5

205 9 112 1545 425 1824 Classification Kate for... Table 2200x1700 5

3.1.1. Data Preprocessing

In order to distinguish between figures and text in the system to be developed in the next stage, the ratio of the area
covered by a block to the entire area of the image in the data set and the number of words contained in the block are needed.
Firstly, the width and height are calculated from the required columns of the block expressing the coordinates as a rectangle
and added to the dataset table as a new column. Then, the page area is calculated using the page width and height from the
data set. Finally, the area occupied by the block on the page as a percentage was found and added to the data set. At the
development stage, the positions of the blocks and other unnecessary information were discarded, and a data set was formed.

The texts in the blocks contain meaningless characters left over from the OCR process, as well as characters that are
not important for the number of words, such as punctuation marks. These need to be cleared in order to reach a correct number
of words. The text is then converted to words, and the word count is calculated. Finally, a parameter is obtained using the
ratio of the block to the page area and the number of words; this is then added to the data set. Table 2 was formed once the
basic data analysis had been performed on the obtained data set.

Table 2.
Percentages for the Number of Words in the Field
Block Type Number Page Block Rate (%) Number of Words per

Block

Text 8405 4.11 55.36

Title 1873 0.51 3.8

Form 795 12.47 31.3

List 680 12.91 149.54

Table 213 9.96 59.35

Açıklamalı [PE14]: Paragraphs should have at least three
sentences

Açıklamalı [PE15]: Number of blocks per page and number
of words per block

This table heading is more accurate, is it not?

Percentages for the Number of Words in the Field is not very
clear

Number of words on field is even less clear

3.1.1. Data Preprocessing
In order to distinguish between figures and text in the system to be developed in the next stage, the ratio of the area

covered by a block to the entire area of the image in the data set and the number of words contained in the block are
needed. Firstly, the width and height are calculated from the required columns of the block expressing the coordinates
as a rectangle and added to the dataset table as a new column. Then, the page area is calculated using the page width
and height from the data set. Finally, the area occupied by the block on the page as a percentage was found and added to
the data set. At the development stage, the positions of the blocks and other unnecessary information were discarded,
and a data set was formed.

The texts in the blocks contain meaningless characters left over from the OCR process, as well as characters that are
not important for the number of words, such as punctuation marks. These need to be cleared in order to reach a correct
number of words. The text is then converted to words, and the word count is calculated. Finally, a parameter is obtained
using the ratio of the block to the page area and the number of words; this is then added to the data set. Table 2 was
formed once the basic data analysis had been performed on the obtained data set.

Table 2. Percentages for the Number of Words in the Field

 5

document provided by different applications, all the found characters are placed in their positions on the page with fixed
coordinates. These studies were unable to produce a code similar to LaTeX code written by a human.

3. Method
3.1. Dataset

The current study has found no conducted stud to have a suitable dataset. For this reason, 103 academic publications
in PDF format were accessed on the web environment. These were then used during the literature search on the subject.

The PDFs collected for training the system under development were first converted to an image file so that each
page is a separate image. The information then needs to be extracted from the pictures. This information involves the location
of the text, title, lists, tables, and image blocks, as well as the text contained in the blocks. In order to find the classes of the
blocks, the study uses the LayoutParser library (Shen et al., 2021) instead of labeling them individually. This library allows
the location and classes of the blocks in each image to be found and recorded in CSV format in accordance with the
segmentation system to be developed later using OCR as the last operation on the texts the blocks contain. Table 1 shows the
dataset sample records. In order to create the data set, 11,965 blocks were extracted from 1,141 images.

Table 1.
Dataset Sample Records

Index Box Index Box X1 Box X2 Box Y1 Box Y2 Box Text Box Type Page Size Page Number

200 10 951 1574 333 1419 Intelligent Multimedia... List 2200x1700 3

201 0 225 1440 1792 1848 Fig. 2. Results: a) Input... Text 2200x1700 4

202 2 219 1450 196 1742 fay\n\nie\n\ni f\n\n \n\n... Figure 2200x1700 4

203 3 226 843 215 1375 RT ee aa ates caret\n\... Figure 2200x1700 5

205 9 112 1545 425 1824 Classification Kate for... Table 2200x1700 5

3.1.1. Data Preprocessing

In order to distinguish between figures and text in the system to be developed in the next stage, the ratio of the area
covered by a block to the entire area of the image in the data set and the number of words contained in the block are needed.
Firstly, the width and height are calculated from the required columns of the block expressing the coordinates as a rectangle
and added to the dataset table as a new column. Then, the page area is calculated using the page width and height from the
data set. Finally, the area occupied by the block on the page as a percentage was found and added to the data set. At the
development stage, the positions of the blocks and other unnecessary information were discarded, and a data set was formed.

The texts in the blocks contain meaningless characters left over from the OCR process, as well as characters that are
not important for the number of words, such as punctuation marks. These need to be cleared in order to reach a correct number
of words. The text is then converted to words, and the word count is calculated. Finally, a parameter is obtained using the
ratio of the block to the page area and the number of words; this is then added to the data set. Table 2 was formed once the
basic data analysis had been performed on the obtained data set.

Table 2.
Percentages for the Number of Words in the Field

Block Type Number Page Block Rate (%) Number of Words per

Block

Text 8405 4.11 55.36

Title 1873 0.51 3.8

Form 795 12.47 31.3

List 680 12.91 149.54

Table 213 9.96 59.35

Açıklamalı [PE14]: Paragraphs should have at least three
sentences

Açıklamalı [PE15]: Number of blocks per page and number
of words per block

This table heading is more accurate, is it not?

Percentages for the Number of Words in the Field is not very
clear

Number of words on field is even less clear

Block types are arranged in such a way that their shapes and text (e.g., list, table, text, and title) are combined. In the
experiments, the Table Block detection was unsuccessful.

3.1.2. Page and Block Types
Academic publications do not have a complete set of structural standards, but certain structures are common. For

example, the first page of an academic publication should contain a main title and an abstract. However, keywords are
not found in every publication format. As another example, the last page should contain reference information. Due
to these differences, instead of using the same text classification model for each page of the digital document, three
different classes have been determined for the pages of a digital document. These are the first pages, the middle pages,
and the last (reference) pages. After determining the page type, the models to be developed for the text classes suitable
for that page type will be used. For this reason, the selection was made from the data set obtained at the beginning.
Afterward, the data set was then recreated by applying the OCR process to the entire page.

256

Kazanc, M., Ensari, T., Dagtekin, M., Converting Image Files to LaTeX Format Using Computer Vision...

Data with block type figures are decoded from the middle pages data set. This stage will take no action regarding
that data class. The middle pages’ text classes are decoded as text, titles, tables, or lists.

For the first pages, the block types in the dataset are determined as main title, author(s), keywords, title, and text. For
the last pages (i.e., references), the block types in the dataset are text, reference, title, and table.

3.2. Training the Model
This study, carries out different model trainings within its scope to perform different tasks. The model trainings

divide the datasets into 80% training and 20% testing. The study uses the following machine learning models: decision
tree, support vector machine (SVM), k-nearest neighbor (KNN), random forest, and linear classifier. The decision tree
model has internal nodes that can be taken as tests on input data patterns and leaf nodes that can be taken as categories.
These tests are filtered down through the tree to get the right output-to-input pattern (Navada et al., 2011). SVM is a
useful methodology for finding the best possible surface to separate positive samples from negative samples (Ali et
al., 2016). KNN is categorized as an unknown document. The KNN classifier ranks the document’s neighbors among
the training documents and uses the class labels of the k-most similar neighbors (Uğuz, 2011). As the name implies,
the random forest classifier consists of a large number of individual decision trees that operate as an ensemble. Each
individual tree in the random forest in this algorithm gives a class prediction, and the class with the most votes among
the trees becomes the model’s predicted class (Akpan & Starkey, 2021). Linear classifier is a method for dividing data
into classes by finding a linear combination of attributes (Doğan et al., 2019).

3.2.1. Training the Text and Figure Classifications Model
Table 3 provides the algorithms used to perform the figures and text classifications of the block type and the complexity

matrix formed as a result of the prediction applied to the dataset test section.

Table 3. Text/Figure Model Evaluation Values

.

 6

Block types are arranged in such a way that their shapes and text (e.g., list, table, text, and title) are combined. In
the experiments, the Table Block detection was unsuccessful.

3.1.2. Page and Block Types

Academic publications do not have a complete set of structural standards, but certain structures are common. For
example, the first page of an academic publication should contain a main title and an abstract. However, keywords are not
found in every publication format. As another example, the last page should contain reference information. Due to these
differences, instead of using the same text classification model for each page of the digital document, three different classes
have been determined for the pages of a digital document. These are the first pages, the middle pages, and the last (reference)
pages. After determining the page type, the models to be developed for the text classes suitable for that page type will be
used. For this reason, the selection was made from the data set obtained at the beginning. Afterward, the data set was then
recreated by applying the OCR process to the entire page.

Data with block type figures are decoded from the middle pages data set. This stage will take no action regarding
that data class. The middle pages’ text classes are decoded as text, titles, tables, or lists.

For the first pages, the block types in the dataset are determined as main title, author(s), keywords, title, and text.

For the last pages (i.e., references), the block types in the dataset are text, reference, title, and table.

3.2. Training the Model

This study, carries out different model trainings within its scope to perform different tasks. The model trainings
divide the datasets into 80% training and 20% testing. The study uses the following machine learning models: decision tree,
support vector machine (SVM), k-nearest neighbor (KNN), random forest, and linear classifier. The decision tree model has
internal nodes that can be taken as tests on input data patterns and leaf nodes that can be taken as categories. These tests are
filtered down through the tree to get the right output-to-input pattern (Navada et al., 2011). SVM is a useful methodology for
finding the best possible surface to separate positive samples from negative samples (Ali et al., 2016). KNN is categorized
as an unknown document. The KNN classifier ranks the document’s neighbors among the training documents and uses the
class labels of the k-most similar neighbors (Uğuz, 2011). As the name implies, the random forest classifier consists of a
large number of individual decision trees that operate as an ensemble. Each individual tree in the random forest in this
algorithm gives a class prediction, and the class with the most votes among the trees becomes the model’s predicted class
(Akpan & Starkey, 2021). Linear classifier is a method for dividing data into classes by finding a linear combination of
attributes (Doğan et al., 2019).

3.2.1. Training the Text and Figure Classifications Model

Table 3 provides the algorithms used to perform the figures and text classifications of the block type and the
complexity matrix formed as a result of the prediction applied to the dataset test section.

Table 3.
Text/Figure Model Evaluation Values

Classification Model Accuracy

Decision Tree 0.9736

SVM 0.9690

KNN 0.9803

Random Forest 0.9791

Looking at the results from the machine learning models, the most successful model is KNN.

Açıklamalı [PE16]: all the pages?

OCR is looking at more than one page, yes?

Açıklamalı [PE17]: Identify all abbreviations before first use

Açıklamalı [PE18]: the most correct votes?

Looking at the results from the machine learning models, the most successful model is KNN.

3.2.2. Training the Page Type Classification Model
In order to use the dataset prepared for determining the page type when training the model, the data are converted

into a vector showing the representation of words. The accuracy values of the trained models are given in Table 4.

Table 4. Page Type Model Training Accuracy Values

 7

3.2.2. Training the Page Type Classification Model

In order to use the dataset prepared for determining the page type when training the model, the data are converted
into a vector showing the representation of words. The accuracy values of the trained models are given in Table 4.

Table 4.
Page Type Model Training Accuracy Values
Model Accuracy

Decision Tree 0.955307

SVM 0.944134

Random Forest 0.910615

Linear 0.966480

Looking at the results, the linear classifier is the most successful model. The complexity matrix for this model is
given in Table 5.

Table 5.
Linear Classifier Model Training Complexity Matrix

Estimation

First Pages Middle Pages Last Pages

Real
Results

First Pages 16 3 0

Middle Pages 1 130 0

Last Pages 0 2 27

3.2.3. Training the Middle Pages Text Classification Model

 With an 87% accuracy, the SVM classifier was the most successful model in the trainings conducted using the text
classification methods. When examining the results, table blocks were seen to have the lowest accuracy of about 33% success
in being classified.

3.2.4. Training the First Pages Text Classification Model

The linear classifier was the most successful model in the trainings conducted using the text classification methods,
with an 82% accuracy rate. When examining the results, the keyword and main title blocks were seen to have the lowest
accuracy in being classified, with a success rate of about 75%.

3.2.5. Training the Last Pages (i.e., Reference Pages) Text Classification Model

The SVM classifier was the most successful model in the trainings conducted using the text classification methods,
with an 89% accuracy. When examining the results, failure occurred in the table class due to a sufficient sample size not
being provided.

3.3. Segmentation

The first stage in producing LaTeX code from a digital document’s image file is the presence of content regions
(blocks) on the image. The OpenCV library was used for this task. The color scale of the pictures were converted to grayscale
so that the boundaries of the blocks could be found more easily. The pictures consist of three channels (i.e., red, green, and

Açıklamalı [PE19]: Please confirm the table layout
The headings are unclear, how can the first pages column
(estimations) have first, middle, and last pages while the real
results rows also have first, middle, and last pages. What is
being expressed appears conflicting/contradictory
For instance, which are the actual results and which are the
estimates is unclear.

Looking at the results, the linear classifier is the most successful model. The complexity matrix for this model is
given in Table 5.

257

Acta Infologica

Table 5. Linear Classifier Model Training Complexity Matrix

 7

3.2.2. Training the Page Type Classification Model

In order to use the dataset prepared for determining the page type when training the model, the data are converted
into a vector showing the representation of words. The accuracy values of the trained models are given in Table 4.

Table 4.
Page Type Model Training Accuracy Values
Model Accuracy

Decision Tree 0.955307

SVM 0.944134

Random Forest 0.910615

Linear 0.966480

Looking at the results, the linear classifier is the most successful model. The complexity matrix for this model is
given in Table 5.

Table 5.
Linear Classifier Model Training Complexity Matrix

Estimation

First Pages Middle Pages Last Pages

Real
Results

First Pages 16 3 0

Middle Pages 1 130 0

Last Pages 0 2 27

3.2.3. Training the Middle Pages Text Classification Model

 With an 87% accuracy, the SVM classifier was the most successful model in the trainings conducted using the text
classification methods. When examining the results, table blocks were seen to have the lowest accuracy of about 33% success
in being classified.

3.2.4. Training the First Pages Text Classification Model

The linear classifier was the most successful model in the trainings conducted using the text classification methods,
with an 82% accuracy rate. When examining the results, the keyword and main title blocks were seen to have the lowest
accuracy in being classified, with a success rate of about 75%.

3.2.5. Training the Last Pages (i.e., Reference Pages) Text Classification Model

The SVM classifier was the most successful model in the trainings conducted using the text classification methods,
with an 89% accuracy. When examining the results, failure occurred in the table class due to a sufficient sample size not
being provided.

3.3. Segmentation

The first stage in producing LaTeX code from a digital document’s image file is the presence of content regions
(blocks) on the image. The OpenCV library was used for this task. The color scale of the pictures were converted to grayscale
so that the boundaries of the blocks could be found more easily. The pictures consist of three channels (i.e., red, green, and

Açıklamalı [PE19]: Please confirm the table layout
The headings are unclear, how can the first pages column
(estimations) have first, middle, and last pages while the real
results rows also have first, middle, and last pages. What is
being expressed appears conflicting/contradictory
For instance, which are the actual results and which are the
estimates is unclear.

3.2.3. Training the Middle Pages Text Classification Model
With an 87% accuracy, the SVM classifier was the most successful model in the trainings conducted using the text

classification methods. When examining the results, table blocks were seen to have the lowest accuracy of about 33%
success in being classified.

3.2.4. Training the First Pages Text Classification Model
The linear classifier was the most successful model in the trainings conducted using the text classification methods,

with an 82% accuracy rate. When examining the results, the keyword and main title blocks were seen to have the lowest
accuracy in being classified, with a success rate of about 75%.

3.2.5. Training the Last Pages (i.e., Reference Pages) Text Classification Model
The SVM classifier was the most successful model in the trainings conducted using the text classification methods,

with an 89% accuracy. When examining the results, failure occurred in the table class due to a sufficient sample size
not being provided.

3.3. Segmentation
The first stage in producing LaTeX code from a digital document’s image file is the presence of content regions

(blocks) on the image. The OpenCV library was used for this task. The color scale of the pictures were converted to
grayscale so that the boundaries of the blocks could be found more easily. The pictures consist of three channels (i.e.,
red, green, and blue [RGB]). For each pixel, there are values for these three channels. For the grayscale operation,
the OpenCV RGB multiplies each channel by an empirical number, as shown in Equation 1 (Recommendation ITU-R
BT.601-7, 2011). R is the red channel. G is the green channel. B is the blue channel, and Y is the grayscale channel of
the picture.

𝑅𝐺𝐵𝑡𝑜𝐺𝑟𝑎𝑦 : 𝑌 ← 0.299 · 𝑅 + 0.587 · 𝐺 + 0.114 · 𝐵 (1)

The Otsu (1979) threshold determination method was used to convert the grayscale image to binary toning (black
and white). This method first extracts the histogram of the picture. By assuming the threshold value of each class in
the histogram, pixel values with smaller thresholds are then calculated as the background, and pixel values with bigger
thresholds are calculated as the foreground. The variance value is calculated for the remaining classes as shown in
Equation 2. The goal is to minimize the intra-class variance and maximize the inter-class variance. The variable t is a
step. P(i) is the probability found from the histogram, q1 and q2 are the cumulative sum of the classes. The sum of q1
and q2 equals 1, μ1 and μ2are means, and 𝜎12 and 𝜎22 are variances.

𝑞1(𝑡) =
𝑡∑︁

𝑖=1
𝑃(𝑖)&𝑞2(𝑡) =

𝐼∑︁
𝑖=𝑡+1

𝑃(𝑖)

𝜇1(𝑡) =
𝑡∑︁

𝑖=1

𝑖𝑃(𝑖)
𝑞1(𝑡)

&𝜇2(𝑡) =
𝑡∑︁

𝑖=𝑡+1

𝑖𝑃(𝑖)
𝑞2(𝑡)

𝜎2
1 (𝑡) =

𝑡∑︁
𝑖=1
[𝑖 − 𝜇1(𝑡)]2

𝑃(𝑖)
𝑞1(𝑡)

&𝜎2
2 (𝑡) =

𝑡∑︁
𝑖=𝑡+1
[𝑖 − 𝜇2(𝑡)]2

𝑃(𝑖)
𝑞2(𝑡)

(2)

258

Kazanc, M., Ensari, T., Dagtekin, M., Converting Image Files to LaTeX Format Using Computer Vision...

The peculiarity of the Otsu method is that the threshold value is not a fixed value but rather is determined dynamically.
The pixels above the threshold value will be white, and the pixels below the threshold value will be black. This method
is used to obtain the coordinates of the individual blocks by examining the pixels.

This study has found contours to be unnecessary. One example is the page number found in a picture, or informational
messages placed at the top and bottom of a publication downloaded on the web environment stating which academic
institution through which the website connection has been established. These contours should not be taken into account.
In order to remove them from the contour list, the following situations were observed: If the area occupied by the stroke
is less than 10% of the page, if the aspect ratio is less than 20%, if the y-point value of the stroke is less than 3% of
the height of the page, or if the y-point value of the stroke is greater than 95% of the height of the page, this stroke is
not included in the block list being created. As a separate process, OCR was applied to the image fragments that were
created using contour coordinates. The OCR results found the number of words by removing special characters and
punctuation marks.

3.4. Reading Order
The order of reading plays an important role in understanding a document. If the document is more than one column,

the number of columns should be found, and then the contents (e.g., text, figures, tables) should be identified. The
pseudo-code of the reading order algorithm is as follows:

.

 8

 𝑅𝐺𝐵 𝑡𝑜 𝐺𝑟𝑎𝑦: 𝑌 ⃪ 0.299 ⋅ 𝑅 + 0.587 ⋅ 𝐺 + 0.114 ⋅ 𝐵 (1)

GET blocks(), pageWidth

FOR i TO blocks.count STEP i++

 IF blocks.width(i)-blocks.x(i) > pageWidth /2

 fullColumns.add(blocks.id(i))

 IF blocks.width (i) < pageWidth /2

 leftColumns.add(blocks.id(i))

 IF blocks.x(i) > pageWidth /2

 rightColumns.add(blocks.id(i))

ENDFOR

sortTopToBottom(fullColumns)

sortTopToBottom (leftColumns)

sortTopToBottom (rightColumns)

IF blocks.count = fullColumns.count

 readingOrder = fullColumns

ELSEIF fullColumns.count = 0

 readingOrder = leftColumns + rightColumns

ELSE

 FOR fullColumns.count TO m STEP m—

 FOR rightColumns.count TO n STEP n—

 IF fullColumns.y(m) < rightColumns.y(n)

 readingOrder.add(rightColumns (n)

 ENDFOR

 FOR leftColumns.count TO k STEP k—

 IF fullColumns.y(m) < leftColumns.y(k)

 readingOrder.add(leftColumns (k)

 ENDFOR

 ENDFOR

 readingOrder = reverse(readingOrder)

ENDIF

 OUT readingOrder

 OUT readingOrder

After the segmentation of the document in the previous processing step, the process of finding the reading order is
then carried out using the x and y coordinates and width and height information from which the blocks were formed. In
addition, page margin information and inter-column space information, if any, are also found while creating the reading order.

3.5. Text/Figure Classification

Açıklamalı [PE20]: Why is this outside of the text box After the segmentation of the document in the previous processing step, the process of finding the reading order is
then carried out using the x and y coordinates and width and height information from which the blocks were formed. In
addition, page margin information and inter-column space information, if any, are also found while creating the reading
order.

259

Acta Infologica

3.5. Text/Figure Classification
For the blocks found as a result of segmentation and placed in reading order, the next stage is to find out which blocks

are text and which are shapes. For this process, the values required for normalization are calculated from the data used
in the training of the model, then the normalization process is applied to the newly found page block area ratio and
word number values. The machine learning model prediction results are then added as a new column to the dataset.
In the next stage, the blocks that have been classified as shapes are cropped from the source image according to their
coordinates and saved as a new image file. The ID number for that block is given as the name.

3.6. Page Type Classification
OCR is performed on the entire source image to determine the page type. In order to determine the page type, the

OCR result made using the vector state of the dataset used in the model’s training as a source is converted into a vector,
and then predictions are made on the model. The prediction results can be one of three classes: first pages, middle
pages, and last pages.

3.7. Classification Of Text According to Page Type
Three different machine learning models have been trained to perform the text classification process according to

page type. The predictions are performed using one of these models based on the page type information that was found.
The extracted data is then saved to the source folder in CSV format. The page border information (if present), the space
between the columns, the width and height of the source image, the information about the columns (if present), and the
page type information are saved to the source folder in JSON format. The study has been carried out in this way, with
all the operations performed up to this stage having been recorded.

3.8. Generating the LaTeX Code
The presence of special characters that are also used for writing commands in LaTeX code (e.g., % $ &̂) in the text

will cause compilation errors. In order to prevent errors that may occur, the back space character (i.e.,\) is added before
these characters should they occur with a function written in the text column in the dataset. The generated LaTeX code
is then saved to the source folder in a file with the extension .tex. The text classifications are taken from a list based on
page type, and the process then is started.

According to the information from the JSON file for the first pages section, the blocks found as such are identified
as single or double columns. The necessary code is then added for the page borders and, if necessary, for the blank
information between the columns. The necessary packages are then added. If the source image is classified as a first
page, the main page and author information are then added there. LaTeX codes have been added for the middle pages
section in accordance with the text classifications contained in the dataset.

3.9. Application Development
The development stages are mentioned in detail. The pseudo-code for the application algorithm is as follows:

4. Findings
Figure 1 shows the .tex file for the compiled PDF output examples; this file’s output is formed as a result of a source

digital publication given as input to the developed application.

260

Kazanc, M., Ensari, T., Dagtekin, M., Converting Image Files to LaTeX Format Using Computer Vision...

 11

GET image

grayImage = doGrayScale(image)

blackWhiteImage = otsuThreshold (grayImage)

dilationImage = dilation(blackWhiteImage)

blocks() = findContour(dilationImage)

readingOrder = findReadingOrder(blocks())

blocks() = findTextFigure(blocks())

pageType = findPageType(image)

IF pageType = “firstPage”

 blocks() = firstPageTextClassification(blocks())

ELSEIF pageType = “middlePage”

 blocks() = middlePageTextClassification(blocks())

ELSEIF pageType = “lastPage”

 blocks() = lastPageTextClassification(blocks())

ENDIF

OPEN texFile AS tex

 tex. addPreamble(preambleInformation)

IF pageType = “firstPage”

 tex.preambleAdd(“Main Title”,”Author”,)

 tex.addBody(“Title”,”Text”,”Keyword”,”Figure”)

ELSEIF pageType = “middlePage”

 tex. addBody(“Title”,”Text”,”List”,”Table”,”Figure”)

ELSEIF pageType = “lastPage”

 tex. addBody(“Title”,” Text”,”Referance”,” Table”,” Figure”)

CLOSE texFile

 OUT texFile

4. Findings

Figure 1 shows the .tex file for the compiled PDF output examples; this file’s output is formed as a result of a source
digital publication given as input to the developed application. Figure 1a shows the original document and Figure 1b shows the PDF output of the developed application. The

application developed in this example was found to be successful. A two-column page structure has been created.
Blocks are found that have been made with errors. In addition, no exact match is found due to features that were not
taken into account in this application (e.g., font type, paragraph spaces).

4.1. Segmentation
When evaluating the blocks obtained by finding contours in OpenCV, the results are concluded to be a partial

success. Successful results were seen to have been obtained in some experiments, while the results from others were
unsatisfactory. If the figures in the digital document have an irregular fragmented structure or occur on the first pages
of the document, the segmentation performance for the main heading is observed to be low. The reason why the
segmentation system does not exhibit repeatable output is that the documents do not have a specific standardized
appearance.

4.2. Text/Figure Classification
The classification was theoretically developed by taking into account the ratio of a shape block to the total area of

the document and the ratio of the area of the block and the number of words contained in it. This is theoretically
true. However, errors are seen to have occurred in the estimates made on real samples. For example, the outputs given
unsuccessfully regarding segmentation are seen for text blocks can be classified as shapes.

4.3. Reading Order
Since the reading order algorithm works heuristically, it works as a rules-based algorithm in accordance with the

information coming from segmentation. As a result of the experiments carried out, errors are seen to be able to occur
due to errors in segmentation.

261

Acta Infologica

.

 12

(a) (b)

Figure 1. Sample application of (a) original document and (b) application output.

Figure 1a shows the original document and Figure 1b shows the PDF output of the developed application. The
application developed in this example was found to be successful. A two-column page structure has been created. Blocks are
found that have been made with errors. In addition, no exact match is found due to features that were not taken into account
in this application (e.g., font type, paragraph spaces).

4.1. Segmentation

When evaluating the blocks obtained by finding contours in OpenCV, the results are concluded to be a partial
success. Successful results were seen to have been obtained in some experiments, while the results from others were
unsatisfactory. If the figures in the digital document have an irregular fragmented structure or occur on the first pages of the
document, the segmentation performance for the main heading is observed to be low. The reason why the segmentation
system does not exhibit repeatable output is that the documents do not have a specific standardized appearance.

4.2. Text/Figure Classification

The classification was theoretically developed by taking into account the ratio of a shape block to the total area of
the document and the ratio of the area of the block and the number of words contained in it. This is theoretically true. However,
errors are seen to have occurred in the estimates made on real samples. For example, the outputs given unsuccessfully
regarding segmentation are seen for text blocks can be classified as shapes.

4.3. Reading Order

Figure 1. Sample application of (a) original document and (b) application output.

4.4. Page Type Classification
The machine learning model applied for finding page types gave completely accurate results in the performed

experiments. No erroneous estimates were made.

4.5. Finding Text Classes Specific to the Page Type
For a source document whose page type is a first page, two sample results are shown in Figures 2a and 2b.

Segmentation problems regarding finding the main title and author blocks negatively affect the classification process.
The errors experienced in segmentation are seen to negatively affect the rest of the system.

For a source document whose page type is a middle page, experiments have shown no repeatable success to occur
regarding detecting list and table blocks. For a source document whose page type is a last page, two sample results are
shown in Figures 3a and 3b. Experiments have shown that tables and reference blocks are confused with text blocks.
No repeatable success has occurred in detecting these blocks.

4.6. Generating the LaTeX Code
LaTeX code is heuristically produced. Therefore, the outputs created in the previous stages of the application are

used in this step. Because the errors that occurred in the previous steps are cumulatively transferred to this step, no
accurate metric has been found for measuring this stage.

5. Discussion and Conclusion
When evaluating the application on different documents, repeated high success was not achievable. One of the reasons

for this is that the system has a complex structure consisting of many stages. This situation causes errors that occur at
one point to accumulate and negatively affect the rest of the system.

262

Kazanc, M., Ensari, T., Dagtekin, M., Converting Image Files to LaTeX Format Using Computer Vision...

13

Since the reading order algorithm works heuristically, it works as a rules-based algorithm in accordance with the
information coming from segmentation. As a result of the experiments carried out, errors are seen to be able to occur due to
errors in segmentation.

4.4. Page Type Classification

The machine learning model applied for finding page types gave completely accurate results in the performed
experiments. No erroneous estimates were made.

4.5. Finding Text Classes Specific to the Page Type

For a source document whose page type is a first page, two sample results are shown in Figures 2a and 2b.
Segmentation problems regarding finding the main title and author blocks negatively affect the classification process. The
errors experienced in segmentation are seen to negatively affect the rest of the system.

a) (b)

Figure 2. Segmentation results for (a) a successful example and (b) an unsuccessful example.

For a source document whose page type is a middle page, experiments have shown no repeatable success to occur
regarding detecting list and table blocks. For a source document whose page type is a last page, two sample results are shown
in Figures 3a and 3b. Experiments have shown that tables and reference blocks are confused with text blocks. No repeatable
success has occurred in detecting these blocks.

Figure 2. Segmentation results for (a) a successful example and (b) an unsuccessful example.

.

 14

 a) (b)

Figure 3. (a) Segmentation and text classification results for last pages and (b) an example.

4.6. Generating the LaTeX Code

LaTeX code is heuristically produced. Therefore, the outputs created in the previous stages of the application are
used in this step. Because the errors that occurred in the previous steps are cumulatively transferred to this step, no accurate
metric has been found for measuring this stage.

5. Discussion and Conclusion

When evaluating the application on different documents, repeated high success was not achievable. One of the
reasons for this is that the system has a complex structure consisting of many stages. This situation causes errors that occur
at one point to accumulate and negatively affect the rest of the system.

Due to its nature, an academic publication consists mainly of text blocks. These text blocks are divided into classes
within themselves. Separating these blocks of text from one another is often quite a difficult task. Reference pages are given
in Figures 3a and 3b as examples. The presence of different reference systems makes success here difficult. Although NLP
methods are used to separate a reference block from a list or a regular paragraph structure, this is a still a monumental task.

During the literature review and the examined commercial applications, focus on one topic is always observed. For
example, in a commercial solution that was developed only for converting equations to LaTeX code, the equation block was
marked by having the user select it in the browser, after which it is converted to LaTeX code. This is also available in solutions
that produce output in JSON format with metadata obtained from PDF files. Apart from these, studies are found to have

Açıklamalı [PE25]: Confirm the edit. The original figure
title contained unclear redundant phrasing. Figure 3. (a) Segmentation and text classification results for last pages and (b) an example.

Due to its nature, an academic publication consists mainly of text blocks. These text blocks are divided into classes
within themselves. Separating these blocks of text from one another is often quite a difficult task. Reference pages
are given in Figures 3a and 3b as examples. The presence of different reference systems makes success here difficult.
Although NLP methods are used to separate a reference block from a list or a regular paragraph structure, this is a still
a monumental task.

263

Acta Infologica

During the literature review and the examined commercial applications, focus on one topic is always observed. For
example, in a commercial solution that was developed only for converting equations to LaTeX code, the equation block
was marked by having the user select it in the browser, after which it is converted to LaTeX code. This is also available
in solutions that produce output in JSON format with metadata obtained from PDF files. Apart from these, studies are
found to have converted the text obtained with OCR at a very simple level to LaTeX code heuristically. The application
developed in this study has been comprehensive and sophisticated based on the mentioned studies.

Comparisons can be made in terms of the segmentation and classification of blocks with the LayoutParser library,
which uses the deep learning method in this study to create a dataset. LayoutParser can use different pre-trained models.
In accordance with our study, the PublayNet model was preferred. This model has been trained by IBM laboratories
using more than 1 million academic publications.

For the comparison process, making a comparison of a document classified as a middle page will be appropriate
because the text classes for the documents classified as first and last pages in the developed application were unique.
Figure 4b shows a comparison of the system developed in the study with the results of the LayoutParser model used in
Figure 4a.

 15

converted the text obtained with OCR at a very simple level to LaTeX code heuristically. The application developed in this
study has been comprehensive and sophisticated based on the mentioned studies.

Comparisons can be made in terms of the segmentation and classification of blocks with the LayoutParser library,
which uses the deep learning method in this study to create a dataset. LayoutParser can use different pre-trained models. In
accordance with our study, the PublayNet model was preferred. This model has been trained by IBM laboratories using more
than 1 million academic publications.

For the comparison process, making a comparison of a document classified as a middle page will be appropriate
because the text classes for the documents classified as first and last pages in the developed application were unique. Figure
4b shows a comparison of the system developed in the study with the results of the LayoutParser model used in Figure 4a.

 a) (b)

Figure 4. (a) Comparison of the LayoutParser Result and (b) the Developed Application Result.

When examining the system outputs given in Figures 4a and 4b, the LayoutParser made errors in both segmentations
and also failed to take some content into account. The work this study has done on these examples was more successful.

When comparing the results from this study with those from the LayoutParser regarding the samples, the success
rate is seen to vary. However, the system developed here has entailed a more comprehensive study with text classes specific
to reading order and page types. Although a certain success was achieved with the computer vision method applied in this
study, the success achieved using the system had varied results among the selected samples.

With regard to the application developed in this study, this study has been shown machine learning models to still
be useful with short training times, small model sizes, and fast response times in datasets containing keywords. When

Figure 4. (a) Comparison of the LayoutParser Result and (b) the Developed Application Result.

When examining the system outputs given in Figures 4a and 4b, the LayoutParser made errors in both segmentations
and also failed to take some content into account. The work this study has done on these examples was more successful.

When comparing the results from this study with those from the LayoutParser regarding the samples, the success rate
is seen to vary. However, the system developed here has entailed a more comprehensive study with text classes specific
to reading order and page types. Although a certain success was achieved with the computer vision method applied in
this study, the success achieved using the system had varied results among the selected samples.

With regard to the application developed in this study, this study has been shown machine learning models to still
be useful with short training times, small model sizes, and fast response times in datasets containing keywords. When
additionally considering the long training period and large model sizes of popular NLP models, the NLP models
developed for this study can be said to be very practical. As such, the work done in this study is thought to be able to
continue being developed in the future or to lay the foundation for future studies.

264

Kazanc, M., Ensari, T., Dagtekin, M., Converting Image Files to LaTeX Format Using Computer Vision...

Peer Review: Externally peer-reviewed.
Author Contributions: Conception/Design of Study- M.K., T.E., M.D.; Data Acquisition- M.K.; Data
Analysis/Interpretation- M.K.; Drafting Manuscript- M.K.; Critical Revision of Manuscript- T.E., M.D.; Final Ap-
proval and Accountability- M.K., T.E., M.D.
Conflict of Interest: The authors have no conflict of interest to declare.
Grant Support: The authors declared that this study has received no financial support.

ORCID IDs of the authors / Yazarların ORCID ID’leri
Murat Kazanç 0000-0002-8405-0181
Tolga Ensari 0000-0003-0896-3058
Mustafa Dağtekin 0000-0002-0797-9392

REFERENCES
Akpan, U. I., & Starkey, A. (2021). Review of classification algorithms with changing inter-class distances. Machine Learning with Applications,

4, 100031. https://doi.org/10.1016/j.mlwa.2021.100031
Ali, F., Kwak, K.-S., & Kim, Y.-G. (2016). Opinion mining based on fuzzy domain ontology and Support Vector Machine: A proposal to

automate online review classification. Applied Soft Computing, 47, 235–250. https://doi.org/10.1016/j.asoc.2016.06.003
Clark, C., & Divvala, S. (2016). PDFFigures 2.0. Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries, 143–152.

https://doi.org/10.1145/2910896.2910904
CTAN Team. (n.d.). What are TEX and its friends? Retrieved May 8, 2022, from https://www.ctan.org/tex
Deivalakshmi, S., Palanisamy, P., & Vishwanathan, G. (2013). A novel method for text and non-text segmentation in document images. 2013

International Conference on Communication and Signal Processing, 255–259. https://doi.org/10.1109/iccsp.2013.6577054
Deng, Y., Rosenberg, D., & Mann, G. (2019). Challenges in End-to-End Neural Scientific Table Recognition. 2019 International Conference on

Document Analysis and Recognition (ICDAR), 894–901. https://doi.org/10.1109/ICDAR.2019.00148
Ding, H., Chen, K., & Huo, Q. (2019). Compressing CNN-DBLSTM models for OCR with teacher-student learning and Tucker decomposition.

Pattern Recognition, 96, 106957. https://doi.org/10.1016/j.patcog.2019.07.002
Doğan, M. İ., Orman, A., Örkcü, M., & Örkcü, H. H. (2019). Çok gruplu sınıflandırma problemlerine regresyon analizi ve matematiksel pro-

gramlama tabanlı yeni bir yaklaşım. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi. https://doi.org/10.17341/gazimmfd.571643
Kavasidis, I., Pino, C., Palazzo, S., Rundo, F., Giordano, D., Messina, P., & Spampinato, C. (2019). A Saliency-Based Convolutional Neural

Network for Table and Chart Detection in Digitized Documents. Lecture Notes in Computer Science (Including Subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 11752 LNCS, 292–302. https://doi.org/10.1007/978-3-030-30645-8_27

Klatsky, S. (2003). WYSIWYG. Aesthetic Surgery Journal, 23(4), 274–275. https://doi.org/10.1016/S1090-820X(03)00150-X
Li, M., Cui, L., Huang, S., Wei, F., Zhou, M., & Li, Z. (2019). TableBank: A Benchmark Dataset for Table Detection and Recognition.

http://arxiv.org/abs/1903.01949
Navada, A., Ansari, A. N., Patil, S., & Sonkamble, B. A. (2011). Overview of use of decision tree algorithms in machine learning. 2011 IEEE

Control and System Graduate Research Colloquium, 37–42. https://doi.org/10.1109/ICSGRC.2011.5991826
Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1),

62–66. https://doi.org/10.1109/TSMC.1979.4310076
Pang, N., Yang, C., Zhu, X., Li, J., & Yin, X.-C. (2021). Global Context-Based Network with Transformer for Image2latex. 2020 25th International

Conference on Pattern Recognition (ICPR), 4650–4656. https://doi.org/10.1109/ICPR48806.2021.9412072
PRImA. (n.d.). Retrieved May 22, 2022, from https://www.primaresearch.org/
Recommendation ITU-R BT.601-7. (2011, March). https://www.itu.int/dmspubrec/itu-r/rec/bt/R-REC-BT.601-7-201103-I!!PDF-E.pdf
Safnuk, B., & Hu, G. (2018). Reconstructing LaTeX Source Files from Generated PDFs - a Neural Network Approach. 2018 IEEE 16th

International Conference on Industrial Informatics (INDIN), 890–895. https://doi.org/10.1109/INDIN.2018.8472050
Shen, Z., Zhang, R., Dell, M., Lee, B. C. G., Carlson, J., & Li, W. (2021). LayoutParser: A Unified Toolkit for Deep Learning Based Document

Image Analysis. http://arxiv.org/abs/2103.15348
Uğuz, H. (2011). A two-stage feature selection method for text categorization by using information gain, principal component analysis and

genetic algorithm. Knowledge-Based Systems, 24(7), 1024–1032. https://doi.org/10.1016/j.knosys.2011.04.014
Wang, Z., & Liu, J. C. (2021). Translating math formula images to LaTeX sequences using deep neural networks with sequence-level training.

International Journal on Document Analysis and Recognition, 24(1–2), 63–75. https://doi.org/10.1007/s10032-020-00360-2
Wang, Z., Xu, Y., Cui, L., Shang, J., & Wei, F. (2021). LayoutReader: Pre-training of Text and Layout for Reading Order Detection.

http://arxiv.org/abs/2108.11591
Wang, Z., Yang, J., Jin, H., Shechtman, E., Agarwala, A., Brandt, J., & Huang, T. S. (2015). DeepFont: Identify Your Font from An Image.

Proceedings of the 23rd ACM International Conference on Multimedia, 451–459. https://doi.org/10.1145/2733373
Xu, C., Shi, C., Bi, H., Liu, C., Yuan, Y., Guo, H., & Chen, Y. (2021). A Page Object Detection Method Based on Mask R-CNN. IEEE Access,

9, 143448–143457. https://doi.org/10.1109/ACCESS.2021.3121152

265

https://orcid.org/0000-0002-8405-0181
https://orcid.org/0000-0003-0896-3058
https://orcid.org/0000-0002-0797-9392

Acta Infologica

Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., & Zhou, M. (2020). LayoutLM: Pre-training of Text and Layout for Document Image Under-
standing. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 20, 1192–1200.
https://doi.org/10.1145/3394486.3403172

Zhong, X., Tang, J., & Yepes, A. J. (2019). PubLayNet: largest dataset ever for document layout analysis. http://arxiv.org/abs/1908.07836

How cite this article
Kazanc, M., Ensari, T. & Dagtekin, M. (2023). Converting Image Files to LaTeX Format using computer vision,

natural language processing, and machine learning. Acta Infologica, 7(2), 253-266. https://doi.org/10.26650/acin.
1258719

266

https://doi.org/10.26650/acin.1258719
https://doi.org/10.26650/acin.1258719

	INTRODUCTION
	Literature Review
	Method
	Dataset
	Training the Model
	 Segmentation
	Reading Order
	Text/Figure Classification
	Page Type Classification
	Classification Of Text According to Page Type
	Generating the LaTeX Code
	Application Development

	Findings
	Segmentation
	Text/Figure Classification
	Reading Order
	Page Type Classification
	Finding Text Classes Specific to the Page Type
	Generating the LaTeX Code

	Discussion and Conclusion

