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Abstract: This study aims to examine the effects of mixture item response theory 
(IRT) models on item parameter estimation and classification accuracy under 
different conditions. The manipulated variables of the simulation study are set as 
mixture IRT models (Rasch, 2PL, 3PL); sample size (600, 1000); the number of 
items (10, 30); the number of latent classes (2, 3); missing data type (complete, 
missing at random (MAR) and missing not at random (MNAR)), and the percentage 
of missing data (10%, 20%). Data were generated for each of the three mixture IRT 
models using the code written in R program. MplusAutomation package, which 
provides the automation of R and Mplus program, was used to analyze the data. 
The mean RMSE values for item difficulty, item discrimination, and guessing 
parameter estimation were determined. The mean RMSE values as to the Mixture 
Rasch model were found to be lower than those of the Mixture 2PL and Mixture 
3PL models. Percentages of classification accuracy were also computed. It was 
noted that the Mixture Rasch model with 30 items, 2 classes, 1000 sample size, and 
complete data conditions had the highest classification accuracy percentage. 
Additionally, a factorial ANOVA was used to evaluate each factor's main effects 
and interaction effects. 

1. INTRODUCTION 
Tests are widely used in different contexts such as education, psychology, industry, and health. 
In educational and psychological fields, test results are preferred for various purposes such as 
selecting individuals, following their development, or evaluating the efficiency of education 
systems. A growing awareness of the importance and the impact of testing has led to designing 
better tests and developing statistical methods used for the analysis of test scores. Item 
Response Theory (IRT) models are among the most commonly used models in various testing 
settings. Although IRT models have many advantages, they have strict assumptions such as 
unidimensionality, homogeneity population, local independence, and the invariance of item 
parameters (Embretson & Reise, 2000; Hambleton et al., 1991). The advantages of IRT models 
depend on the validity of the model whose assumptions are to be met. Traditional IRT models 
assume that data are drawn from a single homogeneous population. However, it may not always 
be possible because population may include two or more subpopulations that consist of different 
                                                            

*CONTACT: F. Munevver Saatcioglu    fmyigiter@gmail.com    , Ankara Yildirim Beyazit University, 
Rectorate, Ankara, Türkiye 

e-ISSN: 2148-7456 /© IJATE 2022 

https://orcid.org/0000-0003-4797-207X
https://orcid.org/0000-0001-5372-1926
https://doi.org/10.21449/ijate.1164590
https://ijate.net/
https://dergipark.org.tr/en/pub/ijate


Saatcioglu & Atar
 

 1014 

latent classes. Mixture IRT models assume that the overall population includes multiple latent 
classes that can be identified based on the item response patterns (Rost, 1990). In this case, the 
mixture IRT modeling approach is used. In social science research, there have been many 
studies that use mixture IRT models (Alexeev et al., 2011; Cohen et al., 2005; De Ayala & 
Santiago, 2017; Finch & French, 2012; Maij-de Meij et al., 2008; Lee, 2012; Oliveri et al., 
2014; Sen, 2016; Zhang et al., 2015).  The three-parameter Mixture IRT model including item 
parameters and the guessing parameter for each class is shown as the following equation: 
 

𝑃𝑃�𝑥𝑥𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑗𝑗� = 𝑃𝑃𝑖𝑖𝑖𝑖 = ∑ 𝜋𝜋𝑔𝑔𝐺𝐺
𝑔𝑔=1 �𝛶𝛶𝑖𝑖𝑖𝑖 + (1 − 𝛶𝛶𝑖𝑖𝑖𝑖) 𝑒𝑒𝑒𝑒𝑒𝑒�𝛼𝛼𝑖𝑖𝑖𝑖�𝜃𝜃𝑗𝑗𝑗𝑗−𝛽𝛽𝑖𝑖𝑖𝑖��

1+𝑒𝑒𝑒𝑒𝑒𝑒�𝛼𝛼𝑖𝑖𝑖𝑖�𝜃𝜃𝑗𝑗𝑗𝑗−𝛽𝛽𝑖𝑖𝑖𝑖��
�          (1) 

 
In equation (1), 𝑔𝑔 = (1,2, . . ,𝐺𝐺) indicates latent class membership, (𝛽𝛽𝑖𝑖𝑖𝑖), (𝛼𝛼𝑖𝑖𝑖𝑖), and (𝛶𝛶𝑖𝑖𝑖𝑖) 
represent the difficulty, discrimination, and guessing parameters, respectively for item i, (𝜃𝜃𝑗𝑗𝑗𝑗) 
denotes the ability parameter for individual j in class 𝑔𝑔 , and 𝜋𝜋𝑔𝑔 indicates the mixing proportion 
of individuals in a class. The probability that each individual belongs to one latent class and the 

mixing proportion of individuals in each class is estimated with the (𝜋𝜋𝑔𝑔),  and 0 

≤𝜋𝜋𝑔𝑔 ≤1 restriction (Rost, 1990). When the guessing parameter is equal to zero, the two-
parameter mixture IRT model; with the assumption that the guessing parameter is equal to zero 
and the item discrimination parameter is equal to 1, the Mixture Rasch model can be obtained. 
Much of the current research has focused on the Rasch and 2PL version of mixture IRT models, 
while there is a relatively small body of literature on the Mixture 3PL model (Cho, Cohen & 
Kim, 2013; Choi et al., 2020; Li et al., 2009). 
When the Mixture IRT literature is examined, the sample size, the number of items, and the 
number of latent classes appear to affect parameter estimates of the Mixture IRT models. For 
example, Preinerstorfer and Formann (2012) indicated that increasing the sample size (500, 
1000, 2500) and the number of items (10, 15, 25, 40) leads to higher accuracy in estimating the 
parameters of the mixture Rasch model. Moreover, Li et al. (2009) found that recovery of item 
parameters in mixture models such as the one-parameter logistic (1PL), the two-parameter 
logistic (2PL), and the three-parameter logistic (3PL) differed based on the sample sizes (600, 
1200); the number of latent classes (1, 2, 3, 4); and the number of items (6, 15, 30). When the 
number of latent classes increased, the mean root mean square error (RMSE) values increased 
for item difficulty and disrimination parameters. Also, according to the study of Li et. al (2009), 
the mean RMSE values decreased as the sample size and the number of items increased. The 
classification accuracy increased with an increasing number of items. Different sets of sample 
size, number of items, and number of classes that have been used in the mixture IRT models in 
previous studies can be seen in the review study by Sen and Cohen (2019). The present study 
focuses specifically on examining the effects of factors on the estimation of item parameters 
and classification accuracy for mixture IRT models including 1PL, 2PL and 3PL. 
Also, it is suggested that the data set should be examined in terms of missing data so that the 
latent variables which the tests aim to measure can be obtained (Little & Rubin, 1987). Missing 
data in the response patterns cause negative situations such as bias, higher standard errors in 
parameter estimations, and lower power of a test (De Ayala et al., 2001; Finch, 2008; Hohensinn 
& Kubinger, 2011; Pohl et al., 2014). At this point, it would be beneficial to determine the 
percentage of missing data and the mechanism of the missing data type before analyzing the 
data. Also, there is no study with missing data and 3PL mixture IRT models in the literature. In 
the context of the findings to be obtained from this study, it is therefore thought that the research 
is important in terms of making extensive and detailed comments on the error values and 



Int. J. Assess. Tools Educ., Vol. 9, No. 4, (2022) pp. 1013–1029 

 1015 

classification accuracy obtained as a result of the mixture 3PL model and the missing data type 
and missing data percentage factors.  
Another significance of the research is examining the RMSE and bias values of the parameter 
estimations obtained from the mixture IRT models, which is important in terms of evaluating 
the performance of the mixture IRT models in different conditions and determining which 
model has less errors in the determined conditions. The findings to be obtained in this direction 
are considered important in terms of providing information and guiding the practitioners in 
terms of which model would be appropriate to choose according to their own conditions in their 
studies. 
In line with these purposes, this study tries to answer the following questions: 
1) How do the mean RMSE values obtained through parameter estimations change based on 
the sample size, the number of items, the estimation model, the number of classes, the 
percentage of missing data and the missing data type factors?  
2) How does the interaction effect of the variables considered change according to the mean 
RMSE values obtained as a result of parameter estimations? 
3) How does the classification accuracy obtained from the combination of the factors change?  

2. METHOD 
In this study, the factors for simulation conditions were designed to investigate the effects of 
the model, number of latent classes, number of items, sample size, model missing data type and 
missing data rate on the estimates of mixture IRT model parameters and classification accuracy. 
The simulation conditions for this study are as follows: three Mixture IRT models (Rasch, 2PL, 
3PL); number of latent classes (2, 3); number of items (10, 30); sample sizes (600, 1000); 
missing data mechanisms ((complete data, missing at random (MAR), missing at not random 
(MNAR), and missing data percentages (10%, 20%). Overall, 144 conditions were simulated 
in this study. One hundred replications were generated for each condition. All data sets were 
analyzed for each of the mixture IRT models with the computer program Mplus version 8.5 
(Muthe´n & Muthe´n, 1998-2020).  
2.1. Simulation Conditions 
2.1.1. Number of classes 
The examinees have different response patterns on items and according to these different 
patterns, they are assigned to different latent classes. This situation enables estimating group-
specific parameters for latent classes in mixture IRT models. According to the study conducted 
by Sen and Cohen (2019), the number of latent classes used in the studies ranges from one to 
ten. However, according to the results of the model-data fit studies, it is stated that the data 
generally fit the mixture IRT model with two or three latent classes (Finch & French, 2012; 
Park et al., 2016). Therefore, in this study, the conditions for the number of classes were 
determined as two and three to identify poor, average, and good performing individuals (Li et 
al., 2009). 
2.1.2. Number of items 
The number of items has been one of the manipulated variables in various simulation studies in 
the existing literature. The study conducted by Sen and Cohen (2019) shows that the number of 
items used in previous studies varies between 4 and 470 (Cho et al., 2012; Jilke et al., 2015). In 
this research, item numbers were taken as 10 and 30 as reported in Lee (2012) to generate 
different profile of latent classes (poor, average and good performing) according to item 
parameter values. 
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2.1.3. Distribution of item and ability parameters 
Data were generated for each mixture IRT model (i.e., Rasch, 2PL, 3PL) using R program (R 
Core Team, 2020). The distributions of ability and item parameters were generated to be the 
same for each model. Then, class-specific item parameters were generated for each model and 
item parameter values for the classes were obtained (see Table 1). Item difficulty parameter 
values ranged from -2.7 to +2.7 for the 10-item condition, and for the 30-item condition, they 
were randomly generated based on a uniform distribution in the range of -3 to +3. Guess 
parameters were generated for the 0.25, 0.2, and 0.1 corresponding to easy items, medium 
difficulty items, and difficult items, respectively (Li et al., 2009). 
Item difficulty parameter values were written in the Mplus input file as the first threshold and 
guessing parameter values as the second threshold (Muthén & Muthén, 1998-2021). Similar to 
the study of Li et al. (2009), item discrimination parameters were set as 1 for the poor and 
average performing classs and 2 for the good performing class. Ability parameters were 
obtained from the standard normal distribution (N(0,1)) and randomly generated with the runif 
function. In Table 1, the item parameter values generated for 10 items in the Mixture IRT 
models are given. 

Table 1. Item parameter values generated for the 10 items in Mixture IRT models. 
          Class1                       Class2      Class1                      Class2                   Class3 
Item a b c a b c a b c a b c a b c 
1 2 -2.7 0.10 1 2.7 0.25 2 -2.7 0.10 1 -0.5 0.20 1 2.7 0.25 
2 2 -2.1 0.10 1 2.1 0.25 2 -2.1 0.10 1 -0.4 0.20 1 2.1 0.25 
3 2 -1.5 0.10 1 1.5 0.25 2 -1.5 0.10 1 -0.3 0.20 1 1.5 0.25 
4 2 -0.9 0.10 1 0.9 0.25 2 -0.9 0.10 1 -0.2 0.20 1 0.9 0.25 
5 2 -0.3 0.20 1 0.3 0.20 2 -0.3 0.20 1 -0.1 0.20 1 0.3 0.20 
6 1 0.3 0.20 2 -0.3 0.20 1 0.3 0.20 1 0.1 0.20 2 -0.3 0.20 
7 1 0.9 0.25 2 -0.9 0.10 1 0.9 0.25 1 0.2 0.20 2 -0.9 0.10 
8 1 1.5 0.25 2 -1.5 0.10 1 1.5 0.25 1 0.3 0.20 2 -1.5 0.10 
9 1 2.1 0.25 2 -2.1 0.10 1 2.1 0.25 1 0.4 0.20 2 -2.1 0.10 
10 1 2.7 0.25 2 -2.7 0.10 1 2.7 0.25 1 0.5 0.20 2 -2.7 0.10 

In Table 1, item parameter values generated according to all class numbers are presented for 
cases where the number of latent classes is two and three. For the two-class case, arranging the 
item difficulty parameters from easy to difficult in Class 1 means that the individuals in Class 
1 produced a poorer performance when answering the items correctly, whereas arranging the 
item difficulty parameters from difficult to easy in Class 2 means that the individuals in Class 
2 performed better when answering the items correctly. In both classes, item discrimination and 
guessing parameters were found to be compatible with item difficulty values. For the three-
class case the item difficulty parameters in Class 2 are of medium difficulty, which means that 
the individuals in Class 2 produced an average performance in answering the items correctly. 
In all three classes, item discrimination and guessing parameters were found to be compatible 
with item difficulty values.  
2.1.4. Sample Size 
In previous simulation studies, sample sizes larger than 500 were selected (Lee et al., 2021; Li 
et al., 2009) for mixture models in simulation studies. More specifially, Li et al. (2009) reported 
that a sample size of 600 would be appropriate when the number of items is between 15 and 30 
for the Mixture Rasch models; they also suggested that a sample size of 600 would be sufficient 
for a model with 1 to 4 classes for both Mixture 2PL and Mixture 3PL models for a 15-item 
test. Cho et al. (2013) suggested that a sample size larger than 360 can be used for the Mixture 



Int. J. Assess. Tools Educ., Vol. 9, No. 4, (2022) pp. 1013–1029 

 1017 

Rasch model. Cohen and Bolt (2005) successfully applied the Mixture 3PL model with a sample 
size of 1000. Considering these, the sample size of the study was determined as 600 and 1000. 
2.1.5. Missing data 
Rubin (1976) classified missing data as completely at random (MCAR) and missing at random 
(MAR) and these missing data mechanisms have no systematic cause if they are ignored; that 
is, the missing data is a simple random sample of the observed data. However, if the missing 
pattern is missing not at random (MNAR), in this case ignoring nonignorable missing responses 
leads to biased parameter estimates (Little & Rubin, 1987).  
 In the scope of this study, MAR and MNAR data generation was based on the study of Finch 
(2008): for a 10-item data set, 3 most difficult items were set as target items. A total score was 
calculated for the remaining 7 items. Based on the total scores excluding the target items, the 
simulations were divided into four fractiles (0-1, 2-3, 4-5, 6-7) for each class. Four fractiles 
were created with four different values of the missing response probabilities on the target items. 
The mean of these probabilities for the fractiles was designed to be equal to the total percentages 
of missing responses, namely 10% and 20%. Generating missing data through this way, 
response patterns were formed for poor, average, and good performing simulatives based on 
the total scores of the items excluding the target items. 
2.2. Estimation 
Parameters for mixture IRT models can be estimated by Bayesian estimation with Markov chain 
Monte Carlo (MCMC) algorithms or maximum likelihood estimation (MLE) techniques. There 
are some differences in the way these two techniques are implemented. Edwards and Finch 
(2018) stated that the Full Information Maximum Likelihood (FIML) method produced better 
results in their study where they examined the parameter estimations for MAR and MNAR 
cases by considering the 2PL and 3PL IRT models. As the name suggests, FIML method 
estimates model parameters using a maximum likelihood fitting function with all the data 
available. Thus, individuals with missing data are included in the parameter estimation process 
with all the information related to them, and these are ignored for variables with missing values. 
In addition, FIML does not involve the assignment of missing values, thus making the use of 
this method less cumbersome than some of the other proposed approaches, especially those that 
rely on data assignment. Finally, FIML is available in most statistical software, which, in 
practical terms, makes it very easy to use.  
2.3. Analysis 
The data were analyzed with the MplusAutomation package, which can integrate between the 
Mplus program and the R program (Hallquist & Wiley, 2018). Input files to be used for 100 
replications and output files obtained were also produced with the MplusAutomation package 
and analyzed. In this simulation study, the performance of Mixture IRT models was evaluated 
on the basis of two criteria: Item parameter recovery and classification accuracy.  
2.3.1. Item parameter recovery 
In this study, root mean square error (RMSE) values were used to assess the accuracy of item 
parameter estimates, calculated with the help of the following equation by using the item 
number, the number of classes, and the number of replications for the estimated item difficulty 
parameter values: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽𝑖𝑖) = �∑ ∑ ∑ �𝛽̂𝛽𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛽𝛽𝑖𝑖𝑖𝑖�
2𝐶𝐶

𝑔𝑔=1
𝐼𝐼
𝑖𝑖=1

𝑅𝑅
𝑟𝑟=1

𝑅𝑅𝑅𝑅𝑅𝑅
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In this equation, 𝛽̂𝛽𝑖𝑖𝑖𝑖𝑖𝑖 represents the estimated item difficulty parameter obtained from R 
replication for item i in class g, 𝛽𝛽𝑖𝑖𝑖𝑖 represents the true value of item parameter for item i in 
class g, R denotes the number of replications, I indicates the number of items, and C denotes 
the number of classes. Equation 1 was also used for the assessment of item discrimination and 
item guessing parameter estimates. Before calculating the RMSE for a given replication, 
parameter estimates were first transformed to the scale of the generating values with mean 
equating (Kolen & Brennan, 2004). The parameter estimates are exactly the same as the true 
value when RMSE equals zero. Lower values (e.g., <0.10) indicate better fit. 
2.3.2. Effect size 
The effect size is defined as the variance ratio describing each main effect, relationship, and 
error in the ANOVA design and takes a value between 0.00 and 1.00 (Cohen, 1988). Eta-square, 
which does not require the assumption of linearity between the variables, shows how effective 
the independent variable is on the dependent variable. According to Cohen (1988), 0.01 for the 
small effect size value; 0.06 for the medium effect size value; and 0.14 for high effect size value 
are recommended as lower limit values. In the presence of more than one estimator, partial eta-
squared measures the proportion of the total variance explained by a given estimator, after 
keeping the variance explained by other estimators constant. It is recommended to use partial 
eta-square to determine interaction effects in multi-way or factorial ANOVA designs 
(Richardson, 2011; Norouzian & Plonsky, 2018). In this study, the mean RMSE values obtained 
from the estimated item parameters were taken as the dependent variable and the factors were 
also taken as independent variable. Main and interaction effects were interpreted with eta-
squared values in line with the values suggested by Cohen (1988). 
2.3.3. Classification accuracy 
Within the data sets produced for classification accuracy, there is a posterior probability for 
each person in each latent class based on person’s response pattern. Each person in the latent 
class was assigned to a latent class according to their highest posterior probability values, saved 
in the Mplus output and these values were extracted with the MplusAutomation package. For a 
data set with 1000 examinees, classification accuracy value was calculated as 0.92, which 
means there is a matched assignment for 920 of the 1000 cases. 
2.3.4. Label switching 
Since there is no information about the number and nature of estimated classes in mixture IRT 
models, sometimes the parameters estimated for Class 1 can be labeled as Class 2. In such cases, 
the problem of label switching can be overcome by taking the estimated item parameter values 
as starting values in Mplus syntax (Kutscher et al. 2019). 

3. RESULTS 
3.1. Item Parameter Recovery Results 
3.1.1. Item difficulty parameter 
The mean RMSE values of the estimated item difficulty parameters for the mixture models are 
presented in Table 2. The codes in this table for simulation conditions are designed to represent 
the combination of factors for a given situation. To specify the simulation conditions, codes 
with 10-13 digits were created. The first two characters of the codes denote class number (2C, 
3C); the following three characters refer to missing data percentage (10P, 20P); the next 
grouping indicates sample size (600, 1000), and the last two characters represent the number of 
items (10,30). For example, in the 2C10P60010 codes the number of classes is denoted by 2C, 
the percentage of missing data by 10P, the sample size by 600, and the number of items by 10. 
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Table 2. The mean RMSE values of the estimated item difficulty parameters for the Mixture models. 
 Mixture Rasch Mixture 2PLM Mixture 3PLM 
Conditions COMP MAR MNAR COMP MAR MNAR COMP MAR MNAR 
2C10P60010 0.045 0.052 0.075 0.041 0.065 0.089 0.367 0.560 0.373 
2C10P60030 0.025 0.026 0.054 0.025 0.039 0.077 0.112 0.225 0.303 
2C10P100010 0.035 0.043 0.067 0.032 0.038 0.070 0.219 0.265 0.263 
2C10P100030 0.021 0.022 0.050 0.021 0.022 0.052 0.090 0.168 0.352 
2C20P60010 0.046 0.083 0.082 0.057 0.121 0.241 0.348 0.654 0.592 
2C20P60030 0.025 0.028 0.251 0.037 0.061 0.070 0.130 0.213 0.222 
2C20P100010 0.035 0.071 0.540 0.034 0.233 0.177 0.219 0.586 0.520 
2C20P100030 0.023 0.024 0.188 0.023 0.024 0.919 0.078 0.124 0.217 
3C10P60010 0.139 1.160 0.236 1.551 1.775 1.950 1.386 1.898 2.831 
3C10P60030 0.105 0.435 0.170 0.070 0.032 0.064 0.210 0.221 0.257 
3C10P100010 0.102 0.206 0.125 0.973 1.256 1.778 1.075 1.704 2.636 
3C10P100030 0.082 0.069 0.036 0.051 0.096 0.075 0.160 0.196 0.195 
3C20P60010 0.148 1.350 1.690 1.761 1.994 2.570 1.160 4.471 2.357 
3C20P60030 0.081 0.397 0.191 0.279 1.436 1.709 0.246 0.292 0.283 
3C20P100010 0.090 0.884 0.383 1.641 1.832 2.237 2.652 2.673 2.341 
3C20P100030 0.024 0.058 0.088 0.226 0.439 0.113 0.141 0.253 0.212 

 
Table 2 shows that the mean RMSE values of the item difficulty parameters obtained for the 
Mixture Rasch model decreased as the number of items and the number of classes increased. 
As can be seen in Table 2, in the complete data, the mean RMSE values decreased as the number 
of items and sample size increased, and the mean RMSE values increased as the number of 
classes and the percentage of missing data increased. In MAR and MNAR data conditions, the 
mean RMSE values generally decreased as the number of items and sample size increased, and 
the mean RMSE values generally increased as the number of classes and the percentage of 
missing data increased. It can also be seen that item difficulty parameter values had the highest 
mean RMSE values in complete, MAR, and MNAR data with 3 class, 20% missing data 
percentage, 600 sample size, and 10 item (3C20P60010) condition. The lowest mean RMSE 
value was observed in complete data, 2 class, 10% missing data, 1000 sample size, and 30 item 
(2C10P100030) condition. 
In Table 2, it can be seen that the mean RMSE values of the item difficulty parameters obtained 
for the Mixture 2PL model were higher than the mean RMSE values of the item difficulty 
parameters obtained for the Mixture Rasch model. Also, the mean RMSE values decreased as 
the number of items and sample size increased, and the mean RMSE values increased as the 
number of classes and the percentage of missing data increased. When the mean RMSE values 
were examined according to the missing data types, higher RMSE values were obtained for the 
MNAR condition. The item difficulty parameter values for the mixture 2PL model were 
obtained with the highest RMSE values, while the MAR and MNAR data with 3 class, 20% 
missing data percentage, 600 sample size, and 10 item (3C20P60010) condition. The lowest 
mean RMSE value was observed in the complete data with 2 class, 10% missing data, 1000 
sample size, and 30 item (2C10P100030) condition. 
As shown in Table 2, the mean RMSE values of the item difficulty parameters obtained for the 
Mixture 3PL model were higher than those for the Mixture 2PL model. Also, the mean RMSE 
values increased as the complexity of the model increased (i.e from Rasch to 3PL model). The 
mean RMSE values decreased as the number of items and sample size increased, and the mean 
RMSE values increased as the number of classes and the percentage of missing data increased. 
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When the mean RMSE values were examined according to the missing data types, higher 
RMSE values were obtained for the MAR data condition. Table 2 shows that the highest mean 
RMSE value of the item difficulty parameter values for the mixture 3PL model was MAR data, 
with 3 class, 20% missing data percentage, 10 item, and a sample size of 600 (3C20P60010) 
condition and also the lowest RMSE value was seen with complete data, 2 class, 10% missing 
data, 30 item, and a sample size of 1000 (2C10P100030) condition. 
3.1.2. Item discrimination parameter 
The mean RMSE values of item discrimination parameter values for the Mixture 2PL and 3PL 
model are given in Table 3: 

Table 3. The mean RMSE values of the estimated item discrimination parameters for the Mixture 2PL 
and 3PL models. 
 Mixture 2PLM Mixture 3PLM 
Conditions COMP MAR MNAR COMP MAR MNAR 
2C10P60010 0.165 0.212 0.497 0.331 0.645 0.634 
2C10P60030 0.179 0.310 0.277 0.161 0.234 0.171 
2C10P100010 0.057 0.061 0.063 0.264 0.320 0.216 
2C10P100030 0.024 0.038 0.052 0.094 0.115 0.120 
2C20P60010 0.234 0.261 0.563 0.371 0.654 0.662 
2C20P60030 0.259 0.256 0.523 0.192 0.229 0.262 
2C20P100010 0.183 0.197 0.208 0.337 0.405 0.417 
2C20P100030 0.032 0.041 0.055 0.101 0.151 0.176 
3C10P60010 0.843 0.937 1.222 1.140 1.293 1.337 
3C10P60030 0.725 0.873 0.916 0.776 0.821 0.857 
3C10P100010 0.866 0.910 1.469 0.988 1.113 1.228 
3C10P100030 0.675 0.784 0.833 0.581 0.696 0.705 
3C20P60010 0.975 1.277 1.366 1.262 1.463 1.472 
3C20P60030 0.837 0.927 0.982 0.920 0.943 0.952 
3C20P100010 0.922 0.981 1.032 1.023 1.242 1.281 
3C20P100030 0.786 0.854 0.967 0.723 0.817 0.832 

 
As shown in Table 3, the mean RMSE values of the item discrimination parameter estimations 
for the complete data condition were lower, slightly higher for the MAR condition, and at the 
highest for the MNAR condition. The lowest RMSE values were obtained for complete, MAR 
and MNAR data with for 2 class, 10% missing data, 1000 sample size, and 30 item 
(2C10P100030) condition, while the highest RMSE value was obtained for the MNAR data 
with 3 class, 10% missing data percentage, 1000 sample size, and 10 item (3C10P100010) 
condition. It seems to be consistent with the conditions where the highest RMSE values were 
obtained for item discrimination parameter estimations and the highest mean RMSE values for 
item difficulty parameter estimations. For the mixture 3PL model, the mean RMSE values were 
lower for the complete data case of item discrimination parameter estimations, but higher for 
the MAR and MNAR conditions. The lowest RMSE values were obtained for complete, MAR, 
and MNAR data with 2 class, 10% missing data, 1000 sample size, and 30 item (2C10P100030) 
condition, while the highest RMSE value was obtained for MAR and MNAR data with data 
with 3 class, 20% missing data percentage, 600 sample size, and 10 item (3C10P100010) 
condition. It can be stated that these results and the conditions in which the highest RMSE 
values were obtained for item discrimination and item difficulty parameter estimation values in 
the Mixture 2PL model were similar. 
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3.1.3. Guessing parameter 
Table 4 provides the mean RMSE values obtained for the guessing parameter values for mixture 
3PL model. 

Table 4. The Mean RMSE values of the estimated guessing parameters. 
Conditions COMP MAR MNAR 
2C10P60010 0.076 0.076 0.076 
2C10P60030 0.046 0.046 0.046 
2C10P100010 0.077 0.077 0.078 
2C10P100030 0.046 0.046 0.046 
2C20P60010 0.076 0.076 0.077 
2C20P60030 0.046 0.046 0.046 
2C20P100010 0.078 0.078 0.079 
2C20P100030 0.046 0.046 0.046 
3C10P60010 0.059 0.059 0.060 
3C10P60030 0.038 0.038 0.039 
3C10P100010 0.061 0.058 0.061 
3C10P100030 0.038 0.039 0.039 
3C20P60010 0.059 0.059 0.061 
3C20P60030 0.039 0.038 0.039 
3C20P100010 0.061 0.061 0.061 
3C20P100030 0.039 0.039 0.039 

 
It can be seen in Table 4 that when the number of items for the guessing parameter increased, 
the mean RMSE values decreased as well. Also, the mean RMSE values for guessing 
parameters had lower values than the mean RMSE values obtained for item difficulty and 
discrimination parameters. The reason for this could be that when the guessing parameter values 
are between zero and one, item discrimination and difficulty parameter values can take larger 
absolute values.  
3.2. A Linear Model Analysis of Simulation Results 
Effects of each condition were evaluated using a factorial ANOVA for the RMSE values. The 
results related to partial eta-squared, degree of freedom (df), sum of squares (SS), mean square 
(MS), and F-values from the factorial ANOVA are presented in the following sections. 
3.2.1. ANOVA Results for item difficulty parameter 
In Table 5, main effects, two-way and three-way interactions for each factor are shown for item 
difficulty parameter. As can be seen in Table 5, all factors had a significant effect on item 
parameter estimation. According to partial eta-squared values, number of items (i), number of 
classes (C), and model (M) were the most influential factors on RMSE for item difficulty 
parameter. Missing data type and missing data percentage had also a large effect on the results. 
The least influential factor was the sample size (N). 
The interaction effects between factors shown in Table 5 indicate that type and class (txC), type 
and percentage (txP), item and class (ixC), item and model (ixM), sample and class (NxC), 
class and model (CxM), and percentage and model (PxC) affected the RMSE values. Based on 
partial eta-squared values, it can be seen that two-way interactions had a large effect on the 
results. Also, significant three-way interactions are given in Table 5 and it can be seen that type, 
item and class (txixC), type, class and model (txCXM), item, class and model (ixCxM), and 
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sample, class and model (NxCxM) had significant interaction effects. These results suggest that 
interactions of factors may affect model parameter estimates. 

Table 5. ANOVA results for main effects and interaction effects of simulation conditions for item 
difficulty parameter. 
Factor 𝜂𝜂𝑝𝑝2 df Sum of Squares Mean Square      F 
t 0.832 2   3.881  1.940  54.318*  
i 0.922 1   9.313  9.313 260.685*  
N 0.540 1   0.922  0.922  25.798*  
C 0.951 1  15.340 15.340 429.413*  
P 0.702 1   1.854  1.854  51.902* 
M 0.921 2   9.126  4.563 127.724*  
txi 0.085 2   0.073  0.037   1.024  
txN 0.039 2   0.032  0.016   0.444  
txC 0.663 2   1.543  0.771  21.593*  
txP 0.426 2   0.582  0.291   8.151*  
txM 0.324 4   0.377  0.094   2.635  
ixN 0.109 1   0.096  0.096   2.690  
ixC 0.767 1   2.581  2.581  72.259*  
ixP 0.005 1   0.004  0.004   0.106  
ixM 0.489 2   0.752  0.376  10.531*  
NxC 0.173 1   0.164  0.164   4.591*  
NXP 0.016 1   0.013  0.013   0.360  
NXM 0.077 2   0.066  0.033   0.920  
CXP 0.007 1   0.006  0.006   0.165  
CXM 0.687 2   1.723  0.862  24.119*  
PXM 0.459 2  0.667  0.333   9.334* 
txixC 0.440 2 0.617 0.309  8.637* 
txCxM 0.548 4 0.954 0.239 6.676* 
ixCXM 0.439 2 0.615 0.307 8.605* 
NXCXM 0.268 2 0.288 0.144 4.025* 
Error  22 0.786 0.036  

Note. t =  missing data type, i = number of items, N = sample, C =number of classes, P=missing data percentage, 
M = model.  
*p<.05.  

3.2.2. ANOVA Results for item discrimination parameter 
In Table 6, main effects, two-way and three-way interactions for each factor are shown for item 
disrimination parameter. As can be seen in Table 6, according to partial eta-squared values, all 
factors had a large effect size values on the results. Mean RMSE values for item discrimination 
parameter were also significantly affected by two-way interactions including type and item 
(txi), type and class (txC), item and class (ixC), type and model (txM), item and class (ixC), 
item and model (ixM), and sample and class (PxC). Based on partial eta-squared values, these 
interactions had a large effect on the results. Also, three-way inreactions type, sample and class 
(txNxC), and sample, class and model (NxCXM) affected mean RMSE values for item 
discrimination parameter. These results suggest that interactions of factors may affect model 
parameter estimates. 
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Table 6. ANOVA results for main effects and interaction effects of simulation conditions for item 
discrimination parameter. 
Factor 𝜂𝜂𝑝𝑝2 df Sum of Squares Mean Square      F 
t 0.905  2  0.445   0.223    57.014* 
i 0.969  1  1.442   1.442   369.207* 
N 0.923  1  0.565   0.565   144.609* 
C 0.996  1 13.065  13.065  3345.500* 
P 0.760  1  0.149   0.149    38.052* 
M 0.782  1  0.168   0.168    43.128* 
txi 0.593  2  0.068   0.034     8.756* 
txN 0.379  2  0.029   0.014     3.658 
txC 0.428  2  0.035   0.018     4.483* 
txP 0.012  2  0.001   0.000     0.072 
txM 0.558  2  0.059   0.030     7.570* 
ixN 0.099  1  0.005   0.005     1.318 
ixC 0.777  1  0.163   0.163    41.723* 
ixP 0.007  1  0.000   0.000     0.084 
ixM 0.856  1  0.279   0.279    71.379* 
NxC 0.404  1  0.032   0.032     8.141* 
NXP 0.123  1  0.007   0.007     1.686 
NXM 0.021  1  0.001   0.001     0.258 
CXP 0.103  1  0.005   0.005     1.379 
CXM 0.185  1  0.011   0.011     2.716 
PXM 0.022  1  0.001   0.001     0.268 
txNxC 0.489  2  0.045  0.022     5.738* 
NxCXM 0.495  1  0.046  0.046    11.774* 
Error  12  0.047  0.004  

Note. t = missing data type, i = number of items, N = sample, C =number of classes, P=missing data percentage, 
M = model.  
*p<.05.  

3.2.3. ANOVA Results for guessing parameter 
In Table 7 for each factor, main effect, two-way, and three-way interactions are shown for 
guessing parameter.  

Table 7. ANOVA results for main effects and interaction effects of simulation conditions for guessing 
parameter. 
Factor 𝜂𝜂𝑝𝑝2 df Sum of Squares Mean Square F 
t 0.951 2 0.000 0.000     19.316 
i 1.000 1 0.008 0.008 42941.408* 
N 0.64 1 0.000 0.000     54.039* 
C 1.000 1 0.002 0.002  9336.320* 
P 0.769 1 0.000 0.000     6.671 
ixC 0.999 1 0.000 0.000 1547.526* 
Error  2 0.000 0.000  

Note. t = missing data type, i = number of items, N = sample, C =number of classes, P=missing data percentage.  
*p<.05.  
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When Table 7 is examined, according to partial eta-squared values, it can be seen that especially 
item and class factors had a large effect on the results, but main effects of missing data type and 
missing data percentage were found to have no significant effects. Mean RMSE values for item 
guessing parameter were also significantly affected by interaction between item and class 
factors.  
3.3. Classification Accuracy Results 
Table 8 shows the classification rates for mixture IRT models. 

Table 8. The Classification rates for the Mixture Models. 
 Mixture Rasch Mixture 2PLM Mixture 3PLM 
Conditions COMP MAR MNAR COMP MAR MNAR COMP MAR MNAR 
2C10P60010 98.62 85.03 81.06 98.36 86.85 72.54 98.51 83.71 77.93 
2C10P60030 93.01 87.48 83.07 98.71 87.35 75.44 98.77 88.79 79.98 
2C10P100010 98.62 85.26 84.58 98.34 86.71 72.79 96.90 83.87 77.92 
2C10P100030 99.02 87.81 82.93 99.02 87.41 76.06 99.58 89.30 81.33 
2C20P60010 98.60 79.98 72.03 98.26 72.18 65.02 95.66 81.20 68.47 
2C20P60030 89.02 76.59 72.93 97.03 77.01 72.69 97.01 72.30 73.18 
2C20P100010 98.65 75.61 75.70 98.33 72.97 64.90 96.22 67.25 68.26 
2C20P100030 88.01 76.56 62.44 86.02 77.08 72.90 99.60 75.88 70.46 
3C10P60010 85.26 64.49 64.87 83.70 75.34 68.44 84.37 61.45 61.54 
3C10P60030 83.32 74.43 75.30 83.92 83.47 79.83 83.32 70.96 68.79 
3C10P100010 88.58 67.72 71.61 86.51 76.82 72.01 86.76 62.20 65.25 
3C10P100030 84.92 75.85 75.54 84.92 84.18 80.15 84.92 74.38 71.22 
3C20P60010 77.66 61.75 59.25 83.33 71.42 67.10 80.21 62.64 66.75 
3C20P60030 83.70 63.81 61.86 93.70 72.14 76.08 81.80 62.28 68.33 
3C20P100010 78.60 65.20 60.83 91.66 74.86 68.05 84.65 66.06 69.67 
3C20P100030 85.26 64.44 62.54 93.24 71.75 77.83 82.53 63.53 70.46 

 
As can be seen in Table 8, higher classification accuracy percentages were obtained for the 
compelete data case in the Mixture Rasch model. In the complete data condition, the highest 
percentage of classification accuracy was achieved for 2 class with 10% of missing data, 30 
item, and a sample size of 1000 (99.02), while the lowest percentage of classification accuracy 
was achieved for 3 class with 20% missing data, 10 item, and a sample size of 600 (77.67). 
According to the missing data type, lower classification accuracy percentages were obtained in 
MAR and MNAR pattern conditions. In the MAR pattern condition, the highest percentage of 
classification accuracy was achieved for 2 class, 10% missing data, 30 item, and a sample size 
of 1000 (87.81), while the lowest percentage of classification accuracy was obtained 3 class, 
20% missing data, 10 item, and a sample size of 600 (61.75) condition. In the MNAR pattern 
condition, the highest percentage of classification accuracy was reached for 2 class, 10% 
missing data, 10 item, and a sample size of 1000 (84.58), while the lowest percentage of 
classification accuracy was found 3 classes, 20% missing data, 10 item, and a sample size of 
600 (59.25) condition. 
For the mixture 2PL model condition, higher percentages of classification accuracy were 
obtained for the complete data case. In the complete data condition, the highest percentage of 
classification accuracy was achieved in combinations of 2 class, 10% of missing data, 30 item, 
and a sample size of 1000 item condition (99.02), while the lowest percentage of classification 
accuracy was found for 3 class, 20% missing data, 10 item, and a sample size of 600 (83.32). 
According to the missing data type, lower classification accuracy percentages were obtained in 
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the MNAR pattern condition. In the MAR pattern condition, the highest percentage of 
classification accuracy was achieved for 2 class, 10% of missing data, 30 item, and a sample 
size of 1000 (87.41) while the lowest percentage of classification accuracy was achieved for 3 
class, 20% missing data, 10 item, and a sample size of 600 (71.42) condition. In the MNAR 
pattern condition, the highest percentage of classification accuracy was achieved for 3 class, 
10% of missing data, 30 item, and a sample size of 1000 (80.15), while the lowest percentage 
of classification accuracy was found for 3 class, 20% missing data, 10 item, and a sample size 
of 600 (64.90) condition. 
For the mixture 3PL model condition, higher percentages of classification accuracy were 
obtained for the complete data case as well. In the complete data condition, the highest 
percentage of classification accuracy was achieved for the combinations of 10% (99.58) and 
20% (99.60) missing data percentages of 2 class with 30 item and a sample size of 1000 
condition. The lowest percentage of classification accuracy was achieved for 3 class, 20% 
missing data, 10 item, and a sample size of 600 (80.213) condition. According to the missing 
data type, lower classification accuracy percentages were obtained under MAR and MNAR 
missing data pattern conditions. The highest percentage of classification accuracy obtained for 
the MAR and MNAR missing data pattern was 2 class, 10% of missing data was in the condition 
of 30 item and a sample size of 1000, and the lowest percentage of classification accuracy was 
in 3 class, 10% missing data percentage, 10 item, and a sample size of 600 condition. 

4. DISCUSSION and CONCLUSION 
Although mixture IRT models have been found to be useful in the fields of pscyhology, 
education and medicine, little research has been reported on the effects of sample size, number 
of items, number of latent classes, missing data, factors on model parameter estimates, and 
classification accuracy. In this research, a simulation study was conducted to examine the 
effects of estimation model, the number of items, sample size, the number of latent classes, 
missing data type, the percentage of missing data conditions on item parameter recovery, and 
classification accuracy for three mixture IRT models. The mean RMSE values were examined 
for parameter recovery. Furthermore, the main effects and interaction effects of the factors were 
examined. In addition, classification accuracy percentages were obtained by comparing the 
estimated latent class memberships with the true class memberships.  
The findings indicate that, in the estimation of item difficulty and discrimination parameters for 
mixture IRT models, lower mean RMSE values were obtained as the sample size and number 
of items increased; on the other hand, the mean RMSE value increased as the number of classes 
increased. In the estimation of the guessing parameter, it was seen that the mean RMSE value 
decreases as the sample size, number of items and classes increase. These results match the 
ones observed in other studies. Previous studies investigating the effect of sample size, number 
of items,  number of classes on parameter recovery for Mixture IRT models on item difficulty, 
and item discrimination parameter estimation (Alexeev et al., 2011; Cho et al., 2013; Finch & 
French, 2012; Li et al., 2009; Preinerstorfer & Formann , 2012; Sen et al., 2016) found that the 
mean RMSE value decreased as the sample size and number of items increased, and the mean 
RMSE values increased as the number of classes increased. In the estimation of the guessing 
parameter, it was observed that the mean RMSE values decreased as the sample size, number 
of items, and number of classes increased (Finch & French, 2012; Sen et al., 2016). It can be 
said that the results of this study are consistent with those in the related literature. It has been 
suggested that when the number of classes increases, it is natural for the error values to increase 
due to the decrease in the number of individuals in the classes (Finch & French, 2012).  
In the item difficulty and item discrimination parameter estimations for the mixture models, 
lower mean RMSE values were obtained for the complete data cases, and higher mean RMSE 
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values were obtained for the MAR and MNAR cases of the missing data type. In the cases 
where the percentage of missing data was 20%, higher mean RMSE values were achieved. 
Similar results were found in a study in the literature in which mixture Rasch and mixture 2PL 
model and missing data type and percentage conditions were discussed (Lee, 2012). Obtaining 
mean RMSE values close to each other for the guessing parameter according to the missing 
data types corroborate the findings of Finch (2008), where the mean RMSE values of MAR and 
MNAR conditions were found to be low and very close to each other in the estimation of 
guessing parameter for IRT models. Since the missing data generation mechanism was 
produced as in Finch (2008), and the missing data were analyzed by the FIML method without 
assigning missing data, it seems natural that the mean RMSE values for the guessing parameter 
are close to each other.  
In the recovery of the item parameters, it was observed that the mean RMSE values obtained 
for the Mixture 3PL model were higher than the mean RMSE values obtained for the Mixture 
2PL model, and that the mean RMSE values obtained for the Mixture 2PL model were higher 
than the mean RMSE values obtained for the Mixture Rasch model. In the estimation of item 
parameters, a pattern of RMSE values appears to increase as the complexity of the model 
increases. Therefore, it can be said that the item parameters obtained for the Mixture Rasch 
model have fewer errors than those of the Mixture 2PL and 3PL models. These results are in 
agreement with the studies that obtained lower RMSE values for the two-class Mixture Rasch 
model (Cho et al., 2013; Sen, 2014). 
In addition, when the main effects and interaction effects of the factors were examined, 
significant and high effect size values were obtained for the main effects of all factors 
considered in the estimation of item difficulty and discrimination parameters; however, for 
guessing parameter, it was obtained only for item, class, and model factors. These results 
suggest that interactions of factors may affect model parameter estimates and factors with high 
effect size values are important factors.  
When the classification accuracy percentages were examined, higher classification accuracy 
percentages were obtained for the complete data case in all the Mixture IRT models. For all the 
mixture IRT models, in the complete data and MAR data condition, the highest percentage of 
classification accuracy was obtained in the combinations of 2 class, 10% missing data, 30 item, 
and a sample size of 1000, while the lowest classification accuracy was reached for the 3 class, 
20% missing data percentage, 10 item, and a sample size of 600 condition. It was observed that 
lower classification accuracy was obtained for all the models in MAR and MNAR conditions.  

5. SUGGESTION AND LIMITATIONS  
The values used in the generation of item difficulty, item discrimination, and guessing 
parameters in this specific study are limited to the values used in the study of Li et al. (2009). 
In further studies researchers can change the item parameter generating values using different 
distributions. In addition, in this research, it is assumed that the ability parameter is randomly 
obtained from the standard normal distribution; using different ability distributions, researchers 
can examine the accuracy of recovery of item paremeters. In our simulation study 100 
replications were performed for each condition; researchers can interpret the analysis results by 
changing the number of replications. In this study, the analysis of missing data was carried out 
using FIML method without using missing data assignment methods; by using missing data 
assignment methods, researchers can examine the effects of these methods in Mixture IRT 
models. In addition, the MLR estimation method was used for the estimation of the parameters; 
researchers can use different methods such as Bayesian and these methods can be compared. 
The results of this study are based on dichotomously scored items; researchers can perform 
Mixture IRT models analyses with polytomous scored items. 
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