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Abstract 

This paper is concerned with the problem of solving the Futoshiki puzzle. The Futoshiki, also known as 

“Unequal,” is a puzzle with an n × n grid containing inequality signs between the cells. Some digits may have 

been given at the beginning of the game. The aim is to fill in the empty cells so that each row and column 

contains the digits ‘1’ to ‘n’ without repeats. We have formulated an integer linear programming model to solve 

this problem.  An illustrative example is given to show the validity of the model. The computational results are 

obtained and analyzed on some instances. 
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FUTOSHIKI BULMACASI IÇIN BİR TAM SAYILI          

PROGRAMLAMA MODELİ 

Özet 

Bu çalışmada, Futoshiki bulmacası ele alınmıştır. "Eşitsiz" olarak da bilinen Futoshiki, hücreler arasında 

eşitsizlik işaretleri içeren n × n boyutlu bir bilmecedir. Oyunun başında bazı rakamlar verilmektedir. Amaç, satır 

ve sütunlarda her bir rakamdan bir tane olacak şekilde, boş hücreleri '1' ila 'n' rakamları ile doldurmaktır. Bu 

bulmacayı çözmek için tam sayılı bir doğrusal programlama modeli formüle edilmiştir. Modelin işleyişi örnek 

bir bulmaca üzerinden gösterilmiştir. Ayrıca, test problemleri çözülerek elde edilen sonuçlar analiz edilmiştir.  
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I. INTRODUCTION 

The Futoshiki puzzle is one of the Japanese challenging numeric puzzle and has 

gained in popularity globally. The puzzle is given as an n x n grid of cells. Initially, some cells 

contain numbers. The goal of this puzzle is to fill the empty cells with digits ‘1’ to ‘n.’ Digits 

should not be repeated in each row and column. Though the puzzle is very similar to 

"Sudoku" there is a difference such that it contains inequality signs between some adjacent 

cells. The digits assigned to these cells must satisfy the inequality signs. Each puzzle has a 

unique solution. 

Figure I.  shows the 4 x 4 grid Futoshiki puzzle and its solution. 

 

               

Fig.I. Futoshiki Puzzle Illustrative Example 

In the illustrative puzzle, digits ‘1’ to ‘4’ (1, 2, 3, 4) should be written on each row and 

column. The digit ‘1’ must be written in the cell in the second column of the second row. 

Signs should also be considered; for example, the digit to be written in the third column of the 

first row should be smaller than the digit in the first row and fourth column.  

Let us explain how to solve the illustrative puzzle above manually. We have started 

from the second row because the digit ‘1’ has already been given in this row. The digit ‘4’ 

should be written in the last cell because of less than signs in other cells. When we move to 

the last column where we wrote the digit ‘4’, we must write digit ‘1’ under ‘4’ because the 

digits in other cells cannot be the smallest due to the inequality signs. The solution is 

continued by writing the digit ‘1’ in the last cell of the first column and the first cell of the 

third column. Considering the inequality signs, the digits ‘4’, ‘3’, and ‘2’ are written in the 

cells of the first column, from top to bottom, respectively. If we look at the third column, 

since the digits in the first and fourth cells will be less than the digits next, the digit ‘4’ is 
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written in the third row. Thus, most of the puzzle has been solved. The digits which will be 

written in the other cells also appeared obvious. 

Puzzles have been attracting the attention of the academic community. Santos-Garcia 

& Palomino (2007) have considered how a Sudoku puzzle can be solved with rewriting logic. 

Hinz, Kostov, KneißI, Sürer & Danek (2009) have proposed a mathematical model for the 

Towers of Hanoi and London puzzles. Waziri, Saidu & Musa (2010) have presented a 

mathematical method of solving Hausa puzzles. Maji, Jana & Pal (2013) have developed a 

heuristic algorithm to solve a Sudoku puzzle. Wang & Tang (2014) have studied the 

simulated annealing approach to solving multi-solution nonogram puzzles. Coelho & Laporte 

(2014) have developed two mathematical formulations for Sudoku puzzles. Boreland, 

Clement & Kunze (2015) have introduced a neural network model that combines set selection 

with partial memories to solve Sudoku and KenKen puzzles. Chlond (2015) has developed an 

integer programming model to generate solutions for Wijuko and ABC Logic puzzles. Yu, 

Tang & Zong (2016) have developed a binary integer linear programming model to solve 

Sudoku puzzles. Keçeci (2021) has formulated a binary integer linear programming model to 

solve the Smashed Sums puzzles. 

Sudoku has received considerable attention from the scientific community. Various 

methods have been proposed to solve Sudoku puzzles. Lloyd, Crossley, Sinclair & Amos 

(2021) has indicated that the Futoshiki puzzle is NP-complete, and there exists relatively little 

work on its automated solution, although a candidate list strategy is given in Haraguchi (2013) 

and approximation algorithms are described in Haraguchi & Ono (2015). Haraguchi (2013) 

has studied how many inequalities there should be in the Futoshiki puzzle. Haraguchi & Ono 

(2015) have proposed simple generic approximation algorithms for Latin square Completion-

Type puzzles, such as Sudoku, Futoshiki, and BlockSum, and have analyzed their 

approximation ratios. Mahmood (2019) has proposed a random number generator for the 

Futoshiki puzzle. Piette, Piette, Stephenson, Soemers & Browne (2019) have proposed using 

the XCSP formalism in order to solve logic puzzles, including the Futoshiki puzzle.  Espasa, 

Gent, Hoffmann, Jefferson &Lynch (2021) have presented a new algorithm for efficiently 

finding small minimal unsatisfiable subsets to solve pen and paper puzzles, including the 

Futoshiki puzzle.  

In this paper we have developed an integer programming model to solve the Futoshiki 

puzzle. To our knowledge, an integer linear programming model to solve Futoshiki puzzles 

has not been formulated in the literature so far. 
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The paper is arranged as follows. In Section II, the mathematical formulation is 

presented and model’s solution for illustrative example is given.  This is followed by 

computational results in Section 3. The final remarks are given in Section 4.   

II. MATHEMATICAL FORMULATION AND ILLUSTRATIVE 

EXAMPLE 

In this section, we present a mathematical formulation for the Futoshiki puzzle. First, 

we give the notation used in the mathematical formulation. 

li,   rows ),( Tli   

mj,  columns ),( Smj   

ijr  the digit that is assigned to cell ),( ji at the beginning of the puzzle  )),(( Rji   

  n   puzzle dimension 

T  set of rows 

S  set of columns 

A  set of adjacent cell pairs )),(),,(( mlji with less than inequality sign between them such 

that ),( ji is assigned a smaller digit than ),( ml  

R  set of non-empty cells ),( ji  

ijx  the digit assigned to cell ),( ji  ( Ti , Sj ) 

ijlmy  1, if the digit in the cell ),( ji is greater than the digit in the cell ),( ml ; 0, otherwise                             

( Ti , Sj , Tl , Sm )( li  , mj  ) or ( li  , mj  ) 

Z  the total value of digits assigned to any row or column of an n-dimensional puzzle 

M  a large positive integer number 

The sets of  nT ,...,1 and  nS ,...,1  denote the rows and columns, respectively, 

where the n  is the puzzle dimension. A cell in the ith row, jth column and the lth row, mth 

column is denoted by ),( ji   and ),( ml respectively. The digits )( ijr  to be written in some cells

Rji ),(  are given in advance, where R={(i, j)|(i,j) is non-empty cell} is the set of non-empty 

cells. Inequality signs exist between some pairs of two adjacent cells. These cells are given in 

pairs by set A={(i, j),(l,m)|(i,j)  and (l,m)  are adjacent and (i,j) should be assigned a smaller 
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digit than (l,m)}. In each row and in each column, each digit should be assigned exactly once. 

The Futoshiki problem consists in finding the digits to be written in the empty cells of the n 

dimension puzzle. The integer programming formulation is as follows: 

ZMin             (1) 

Subject to: 

1ijx , Ti , Sj           (2) 

nxij  , Ti , Sj          (3) 

1 ijlmlmij Myxx , Tli  , , Smj  , , li  , mj       (4) 

1 ijlmlmij Myxx , Tli  , , Smj  , , li  , mj       (5) 

1 MMyxx ijlmijlm , Tli  , , Smj  , , li  , mj       (6) 

1 MMyxx ijlmijlm , Tli  , , Smj  , , li  , mj       (7) 

0 j ijxZ , Ti            (8) 

ijij rx  , Rji  ),(           (9) 

lmij xx  , Amlji  )),(),,((          (10) 

 nxij ,...,3,2,1 , Ti , Sj         (11) 

 nxlm ,...,3,2,1 , Tl , Sm         (12) 

 1,0ijlmy , Ti , Sj , Tl , Sm       (13) 

The objective function (1) minimizes the total value of digits assigned to one line (row 

or column) (Z). Constraint (2) ensures that the assigned digits are greater than or equal to one. 

Constraint (3) ensures that the largest assigned digits are equal to puzzle size (n). Constraints 

(4-7) guarantees that the digits to be written in the same row and column are different. 

Constraint (8) determines the total value of digits assigned to any row or column of an n-

dimensional puzzle. This constraint is written for rows only. The sum of the digits assigned to 

the rows equals the sum of the digits assigned to the columns.  Constraints (9) ensures that 

digits given at the beginning of the puzzle are assigned to the corresponding cells. Constraint 

(10) is written for the digits to be assigned to the cells, one of which is desired to be smaller 
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than the other. Constraints (11-12) determine the integer restrictions on the variables. 

Constrains (13) define the binary restrictions on the variables. 

Table I. The Size of Proposed Model 

Variable #Variables Constraint #Constraints 

Z 1 (2) 𝑛2 

𝑥𝑖𝑗  𝑛2 (3) 𝑛2 

𝑦𝑖𝑗𝑙𝑚  2𝑛2(𝑛 − 1) (4) 𝑛2(𝑛 − 1) 

  (5) 𝑛2(𝑛 − 1) 

  (6) 𝑛2(𝑛 − 1) 

  (7) 𝑛2(𝑛 − 1) 

  (8) 𝑛 

  (9) #given digits 

  (10) #signs 

Total 

𝑛2 + 2𝑛2(𝑛 − 1)
+ 1 

 2𝑛2 + 4𝑛2(𝑛 − 1) + 𝑛
+ #𝑔𝑖𝑣𝑒𝑛 𝑑𝑖𝑔𝑖𝑡𝑠
+ #𝑠𝑖𝑔𝑛𝑠 

The model defined by (1)–(10) contains [𝑛2 + 2𝑛2(𝑛 − 1) + 1] variables and [2𝑛2 +

4𝑛2(𝑛 − 1) + 𝑛 + (#𝑔𝑖𝑣𝑒𝑛 𝑑𝑖𝑔𝑖𝑡𝑠) + (#𝑠𝑖𝑔𝑛𝑠)]  linear constraints as seen in Table I. 

The model has been illustrated in the puzzle shown in Figure I. The complete model 

has been formulated with [42 + 2. 42(4 − 1) + 1] = 113 variables and [2(4)2 +

4. 42(4 − 1) + 4 + 1 + 6] = 235 linear constraints.  

The optimum solution is shown in Table II. In the solution of the model, the objective 

function value was found to be 10 (Z=1+2+3+4=10).  
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Table II. The Solution for the Illustrative Example Problem. 

Variable ( ijx ) 

Value 

i j 

1 

1 

2 

3 

4 

4 

2 

1 

3 

2 

1 

2 

3 

4 

3 

1 

2 

4 

3 

1 

2 

3 

4 

2 

3 

4 

1 

4 

1 

2 

3 

4 

1 

4 

3 

2 

As seen in Table II, when we solved the puzzle by the developed model, the same 

result was obtained as when we solved it manually in the previous section. 

III. COMPUTATIONAL RESULTS 

We have analyzed the computational performance of the developed model on 36 

Futoshiki instances. The mathematical model has been applied to puzzles generated from the 

Futoshiki website (https://www.futoshiki.org/). It is possible to obtain puzzles of any 

dimension from four to nine at this website. In addition, puzzles can be created according to 

their difficulty levels. There are four levels: trivial, easy, tricky, extreme. The puzzle with the 

chosen difficulty and dimension is created by the system. We have solved a total of 36 

problems created by the system in all dimensions from 4 to 9 and at three difficulty levels 

(easy, difficult, and extreme). Trivial problems were not included in the study because of their 

simplicity. Table III summarizes the characteristics of the 36 instances. 

https://www.futoshiki.org/
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Table III.  Test Problems Description 

Difficulty 

Dimension (n) 

4 5 6 7 8 9 Total 

Easy 2 2 2 2 2 2 12 

Tricky 2 2 2 2 2 2 12 

Extreme 2 2 2 2 2 2 12 

Total 6 6 6 6 6 6 36 

The mathematical model has been coded in AIMMS 4.13 optimization software. 

CPLEX 12.5 has been used for solving the problem instances. All computations have been 

done on a PC with Intel Core i5-3210M CPU2.50GHz processor and 6.00 GB RAM. We have 

presented detailed computational results in Table IV. 

Table IV.  Computational Results for Problem Instances 

 Problem instances Model size Solution 

 

n # signs 

# given  

digits 

# int. # const. Z CPU Time 

EASY 4 4 1 113 233 10 0.02 

 4 4 1 113 233 10 0.00 

 5 8 2 226 465 15 0.02 

 5 9 2 226 466 15 0.03 

 6 11 3 397 812 21 0.05 

 6 11 4 397 813 21 0.03 

 7 18 4 638 1303 28 0.06 

 7 15 7 638 1303 28 0.08 

 8 30 7 961 1965 36 7.42 

 8 24 8 961 1896 36 0.08 

 9 40 4 1378 2807 45 393.66 

 9 46 4 1378 2812 45 15.47 

TRICKY 4 4 - 113 232 10 0.05 

 4 5 1 113 234 10 0.00 
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 Problem instances Model size Solution 

 

n # signs 

# given  

digits 

# int. # const. Z CPU Time 

 5 8 1 226 464 15 0.02 

 5 8 1 226 464 15 0.02 

 6 11 4 397 813 21 0.05 

 6 10 4 397 812 21 0.06 

 7 18 6 638 1305 28 0.17 

 7 19 4 638 1304 28 0.06 

 8 21 12 961 1961 36 0.28 

 8 26 6 961 1961 36 7.63 

 9 35 8 1378 2806 45 104.23 

 9 31 10 1378 2804 45 0.53 

EXTREME 4 5 1 113 234 10 0.02 

 4 4 2 113 234 10 0.02 

 5 9 1 226 465 15 0.08 

 5 8 2 226 465 15 0.02 

 6 13 2 397 813 21 0.08 

 6 11 3 397 812 21 0.05 

 7 14 7 638 1302 28 0.50 

 7 19 5 638 1305 28 0.09 

 8 19 6 961 1953 36 1.78 

 8 31 5 961 1964 36 11.20 

 9 47 7 1378 2817 45 4.30 

 9 23 16 1378 2802 45 0.22 

 

Table IV shows problem instances according to their difficulty level. For each 

problem instance, the properties of the puzzle (dimension, number of signs and given digits), 

model sizes (number of integer variables and constraints) and solutions (objective function 

value, Z and CPU times in seconds) are also given in Table IV. 
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The objective function of the proposed model minimizes the total value of digits 

assigned. Due to the objective function, it was thought that the largest digit to be assigned to 

the puzzle would not exceed the puzzle size anyway. For this reason, a lower limit was 

initially determined for the digits to be assigned (constraint 2), but the upper limit was not 

determined. Constraint (3) has been added to the model to speed up the solution process; 

because without this constraint, the model could not find the optimum solutions even though 

it worked for two hours to solve the 7, 8 and 9-dimensional puzzles.  

The dimensions and difficulty factors of the puzzle are analyzed with experimental 

computations. As seen on the Table IV the size of puzzle increases the solution time of model 

very little. In 34 of the 36 problem instances optimal solutions are found in less than 1 min. 

Two 9-dimension problems require more than 1 min: one easy problem with 40 signs and 4 

given digits requires 393.66 sec. and one tricky problem with 35 signs and 8 given numbers 

requires 104.23 sec.  

In the easy instances, only one of the 9-dimensional problems was solved in longer 

time (393.66 s) than the others. When two of the 9-dimensional problems are compared, it is 

seen that the digits given at the beginning of the puzzle are four for both. The four digits given 

in the puzzle solved in a short time are 2,8,7,1 )1,7,8,2( 75625911  rrrr  while the digits 

given in the puzzle solved in a long time are 6,7,5,7 )7,5,7,6( 79636112  rrrr and the signs 

are 46 and 40 respectively. As a result, there is no difference between the two problems that 

will affect the solution time. The optimal solutions to the other problems were obtained in a 

much shorter time. 

In tricky instances, only one of the 9-dimensional problems has been solved in longer 

time (104.23 s) than the others. When comparing two 9-dimensional problems, the problem in 

which the optimum solution is obtained in a longer time has 8 given digits

)8,1,8,9,6,6,8,1( 8684797742291413  rrrrrrrr and the other problem has 10 given 

digits )8,4,3,7,3,6,8,5,2,7( 99877144423534331611  rrrrrrrrrr . Their initial 

signs are 35 and 31, respectively. While the number of signs of the problem, whose optimum 

solution is found in a longer time, is higher, the number of digits given at the beginning is 

less. The optimal solutions of the other problems were obtained in a much shorter time 

The optimum solution of extreme instances has been obtained in a short time. 

Although the difficulty levels of the puzzles were determined for manual solution, it is 

obvious that this difficulty levels has no significant impact on the solution times. 
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IV. CONCLUSIONS 

Puzzles have received attention in scientific studies, but there has not been much work 

in the literature on the solution of the Futoshiki puzzle. In this paper, we have addressed the 

solution of that puzzle by developing an integer programming model. We have analyzed the 

computational performance of the developed model on 36 instances, which we have generated 

from the Futoshiki website. A computational experiment has been carried out to investigate 

the effects of puzzle dimension and difficulty factors on the CPU times. These problems have 

been created to solve puzzles of three difficulty levels (easy, tricky, and extreme) and six 

dimensions (4 to 9). The computational results show that all of the instance problems are 

solved optimally in a short time.  
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