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Abstract 

The aim of the study is to determine a measurement invariance cut-off point based on item parameter differences 

in Bayesian Item Response Theory Models. Within this scope, the Bayes factor is estimated for testing 

measurement invariance. For this purpose, a simulation study is conducted. The data were generated in the R 

software for each simulation condition under the one-parameter logistic model for 10 binary (1-0 scored) items. 

The invariance test was performed for various group sizes (n=500, 1000, 1500 and 2000) and difficulty parameters 

(𝑑𝑘=0, 𝑑𝑘=0.1, 𝑑𝑘=0.3, 𝑑𝑘=0.5 and 𝑑𝑘=0.7). The Bayesian analyzes were performed on the WINBUGS using the 

codes written in the R. A Bayes factor that provides evidence for measurement invariance was calculated 

depending on the parameter differences. The Savage–Dickey density ratio, one of the MCMC sampling schemas, 

was used to calculate the Bayes factor. As a result, if the item parameter difference is 𝑑𝑘=0.3 and group sizes are 

1500 or larger, the measurement invariance cannot be achieved. However, for small sample sizes (n=1000 or less) 

measurement invariance interpretation should be done carefully. When the 𝑑𝑘=0.5, there are invariant items only 

in n=500. According to Bayes factor test results, evidence has been produced when 𝑑𝑘=0.7 that measurement 

invariance cannot be achieved. 

Keywords: Measurement invariance, bayesian IRT models, bayes factor, random item effects modelling 

 

Introduction 

The frequency of tests applied in education and psychology to measure latent variables such as cognitive 

and affective characteristics in groups having different characteristics has been progressively increasing. 

These kinds of testing applications often include a comparison among specific groups. Especially in the 

international large-scale assessments which aim to make comparisons against time or among different 

groups in terms of their mathematics, science, or reading skills as well as other psychological structures 

such as attitude, motivation, or anxiety (Davidov et al., 2014). In order to make meaningful comparisons 

among groups the measured latent variable must be the same in all subgroups. The measurement 

invariance is an important prerequisite for making comparisons between individuals or groups with 

varying demographic characteristics, such as different cultures, genders, or regions, to which the 

measurement tool is applied, by considering these differences. This is important to ensure the 

generalizability of the measured structure in different groups (Brown, 2006). 

There are several methods for testing measurement invariance (Millsap, 2011). These can be examined 

in two different groups. One of these methods is the confirmatory factor analysis-based method. In the 

confirmatory factor analysis-based methods, the measurement invariance is examined by testing the 

similarity of measurement models between groups. One of the most important advantages of this method 

is that measurement invariance can be examined in all aspects such as factor loadings, intercepts, 
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residual variances, factor variances and covariance, and the latent-means. The Measurement invariance 

is tested by making comparisons among nested models (Meredith, 1993; Steenkamp and Baumgartner, 

1998). The Higher levels of invariance require strict parameter equality and constraints between groups, 

which is difficult to meet in real applications.  

The other group of methods includes the Item Response Theory (IRT) based methods. In the IRT-based 

methods, measurement invariance is tested by item bias methods used to evaluate the values of item-

level observations in subgroups. Unlike the confirmatory factor analysis (CFA) based methods assuming 

a linear relationship at the item level, in the IRT based methods, a non-linear relationship is revealed 

between the latent structure and the item level scores. The Lord’s χ2, Raju’s area measures, Wald 

statistics (likelihood ratio test), Mantel-Hanzel procedure are among the IRT based methods (Millsap, 

2011). However, all of these methods have some limitations such as the inability to provide evidence 

for the measurement invariance hypothesis and requiring to identify anchor items before the analysis 

(Verhagen, Levy, Millsap, and Fox, 2016).  

Verhagen and Fox (2013) suggested a Bayes Factor on the basis of the variance of the item parameters 

between groups in to compare the measurement invariance hypothesis in nested and large groups such 

as countries and schools. The calculation of the Bayes Factor provides evidence both in favour and 

against the measurement invariance hypothesis, unlike the frequentist methods. In addition, anchor items 

are not needed for this method (Verhagen et al., 2016). However, this method is not convenient to 

compare a small number of groups. 

Verhagen et al. (2016) proposed a different Bayesian factor that allows the comparison of a small 

number of groups and testing measurement invariance. The presented Bayesian measurement model is 

discussed and presented within the framework of a one-parameter logistic model. 

In a test with i person (i=1, …, N) and k binary items (k=1, …, K), the probability of a correct response 

in the one-parameter logistic model (θ: ability parameter, bk: item difficulty parameter) as shown 

Equation 1 (Wright, 1977): 

 

𝑃(𝑌𝑖𝑘 = 1|𝜃𝑖, 𝑏𝑘)= 
𝑒(𝜃𝑖− 𝑏𝑘)

1+𝑒(𝜃𝑖− 𝑏𝑘)   (1) 

 

In the Bayesian IRT models, item parameters’ priors determine the alterations of item characteristics. In 

the random item effect models, all test items are considered as a random sample of the item population. 

The item parameters’ priors for all items show standard normal distribution with a common mean and 

variance (Janssen, Tuerlinckx, Meulders & De Boeck, 2000; De Boeck, 2008).  

 

    𝑏𝑘~𝑁(𝑏0, 𝜎𝑏𝑘

2 )     

 

The posterior distributions for each parameter are the functions of the combination of the average 

percent accuracy of that item in all groups and a prior distribution, the 𝑏0 and σbk

2 . The standard normal 

prior is selected for the prior distributions of the person parameters (Fox, 2010). In the measurement 

invariance test, the Bayesian IRT model is considered within the scope of multiple groups IRT because 

multiple group comparisons are made. The multiple-group IRT models allow differences in test scores 

and item characteristics among groups (Bock & Zimowski, 1997). Thus, in the Bayesian IRT model, a 

measurement model is created by considering the variation of group-specific item parameters between 

groups, as well as the variation among the items. The probability of a person's correct response in 

multiple group IRT one-parameter logistic model is shown in Equation 2 (j group, i person, 𝜃𝑖𝑗= group-

specific person parameter, �̃�𝑘𝑗= Group-specific item parameter): 
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    𝑃(𝑌𝑖𝑗𝑘 = 1|𝜃𝑖𝑗 , �̃�𝑘𝑗)= 
𝑒

(𝜃𝑖𝑗− �̃�𝑘𝑗)

1+𝑒
(𝜃𝑖𝑗− �̃�𝑘𝑗)

 (2)    

 

Group-specific person parameter 𝜃𝑖𝑗, which is hierarchically modeled, shows a normal distribution 

around group mean μj. 

 

    𝜃𝑖𝑗~ 𝑁(𝜇𝑗 , 𝜎𝑗)  

 

In the multiple-group IRT models, it is assumed that group-specific item parameters have a multilevel 

structure for modeling the measurement variance (Fox, 2010). The Group-specific deviations have 

normal distributions with a mean of zero and 𝜎𝑏𝑘

2  for all items. This variance component defines the 

variability of item functions between groups. When this variance is zero, the item is considered to be 

invariant because there is no variability. In addition, if a measurement invariance study is desired 

between a small number or fixed groups, it is more useful to use the fixed group model instead of the 

random group model, since it will be difficult to estimate the random item effects variance.  

Verhagen et al. (2016) introduced a model that can test measurement invariance between two groups 

with Bayes factor. In this model, the group-specific item parameters are estimated separately for 

different groups. The item parameters are independent, and they do not provide information about each 

other. In such a case, a possible prior distribution for the group mean is the normal prior distribution 

with a large variance. A multivariate normal model is applied to group-specific item characteristics. In 

addition, covariance matrices which are based on the correlation between the item parameters of 

different groups are used. 

The group-specific item parameters defined in the model are shown in Equation 3 (𝜇𝑗: mean of the item 

difficulty in group j, 𝑒𝑘𝑗: error term): 

 

    �̃�𝑘𝑗= 𝜇𝑗+𝑒𝑘𝑗     (3) 

 

In the model, 𝜇𝑗  equals zero and 𝑒𝑘𝑗  equals the amount of deviation from the average item difficulty in 

the group. 

These deviations are assumed to show multivariate normal distribution with covariance (𝛴𝑏) for item 

difficulties consisting of item parameter variances for each group. The variance of item parameters may 

vary by group. This means that the variance in the item difficulty parameters of one group is higher than 

the other. Since the group-specific item difficulties are estimated independently for each group, the 

measurement invariance can be directly estimated based on the differences between the item difficulty 

parameters. The difference between the difficulty parameters among the two groups is shown in 

Equation 4 (k. item, groups j and j’, j<j’): 

 

    𝑑𝑘𝑗𝑗′= 𝑏𝑘𝑗 − 𝑏𝑘𝑗′   (4) 

 

In the measurement invariance test for the two groups, the hypotheses are established based on the 

difference between the item difficulty parameters. 
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    𝐻0 : 𝑑𝑘=0  

    𝐻1 : 𝑑𝑘≠0 

 

The Bayes factor which uses Bayesian hypothesis testing is very advantageous in that it provides direct 

information about items’ measurement invariance in a whole test (Jeffreys, 1961). Additionally, it does 

not require items that have been proven measurement invariance before (Verhagen et. al., 2016). 

Furthermore, unlike frequentist statistics, it gives evidence for both 𝐻0 and 𝐻1.  

When only evidence for 𝐻0 is given without using the evidence given for 𝐻1, it leads to exaggerated 

results against 𝐻0 hypothesis that only the evidence for the null hypothesis is considered, especially in 

low-power studies (Rouder et al., 2009; Wagenmakers et al., 2017). In addition, providing evidence for 

both hypothesis tests is advantageous in terms of giving information about which hypothesis should be 

preferred. 

In the measurement invariance test, the marginal likelihood of the 𝐻1  hypothesis is weighted by the 

prior probability of the average likelihood on all possible values of the alternative hypothesis. This 

average likelihood value is equal to the integral of the likelihood function weighted by the prior density 

function of the parameters in the hypothesis. The Bayes factor includes the marginal likelihood ratio for 

both the null hypothesis and alternative hypothesis results. 

The Bayes factor that provides relative evidence for the hypotheses tested is as in Equation 5 (𝑝1(𝑑𝑘) : 

𝐻1 under Cauchy prior distribution) 

 

    𝐵𝐹01 =
𝑃(𝑌|𝐻0)

𝑃(𝑌|𝐻1)
 =

𝑃(𝑌|𝑑𝑘 = 0)

∫ 𝑃(𝑌|𝑑𝑘)𝑝1(𝑑𝑘)𝑑𝑑𝑘
  (5) 

 

The increase in cross-cultural testing practices also increases the importance of measurement invariance. 

Traditional methods based on confirmatory factor analysis, which are frequently used in determining 

measurement invariance, require the comparison of different model fits. In addition, these methods are 

time-consuming as each of these models is expected to be fitted (White, 2000). Furthermore, additional 

restrictions are needed in the definition of these models (Reise, Widaman & Pugh, 1993).  

Other invariance tests require at least one anchor item of which invariance has already been proven. The 

methods used to select an item that is invariant for many groups (Langer, 2008) lead to biased 

estimations if the item contains a certain level of bias (Woods, Cai, & Wang, 2012). Considering all 

these situations, more practical methods are needed to evaluate measurement invariance, especially in 

large-scale tests and cross-cultural studies. Unlike the frequentist methods, multiple hypotheses (𝐻0 and 

𝐻1) can be tested simultaneously with the Bayesian method that is used in the study. Thus, all items in 

the test can be evaluated simultaneously and measurement invariance estimation can be made directly. 

From both practical and theoretical perspectives, it is thought that the research results will be significant. 

It will be possible to have an idea about the measurement invariance based on the difference between 

item difficulty parameters. In addition, it is important that these cut-off points, which are limited by the 

conditions in the study, form an idea for both frequentist and Bayesian measurement invariance studies.  

 

Purpose of the Study 

The aim of the study is to determine a measurement invariance cut-off point based on item parameter 

differences. In accordance with this purpose, the Bayes factor which estimates invariance directly is 

used within the scope of Bayesian IRT models. The invariance test was performed when the difficulty 

parameter differences (𝑑𝑘) are 0.0, 0.1, 0.3, 0.5, 0.7 at group sizes are 500, 1000, 1500, and 2000. 
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Method 

The Simulation Conditions and Data Generation 

The Data was generated in the R software (R Core Team, 2018) when evaluating measurement 

invariance using the Bayes factor. For each group, the sum of item thresholds (𝑏𝑘𝑗) and reference group's 

ability parameter (𝜇𝜃𝑗) are assumed to be zero. The sample sizes in groups were equally determined to 

be 500, 1000, 1500, and 2000. The previous studies suggested that the minimum sample size should be 

500 for unbiased parameter estimation (Thompson, 2018, Asparouhov & Muthén, 2014; De Boeck, 

2008; Stark et al., 2006). It has been found that by increasing the group size from 500 to 1,000 the Type 

I error rate decreased, but there was no significant difference in the Type I error when increasing the 

group size from 1,000 to 2,000 (Finch, 2016). And it was determined that the Bayes factor performed 

well in group sizes of 500 and more (Verhagen et al., 2016). Thompson (2018) noticed that Bayes Factor 

for measurement invariance has got higher power rate with larger sample sizes and suggested using at 

least 500 as a sample size. In addition, considering the real test applications such as PISA, TIMMS, and 

PIRLS, it is known that the minimum sample sizes are usually 500 and more. Based on these findings 

and real data applications the sample sizes in groups were equally determined to be 500, 1000, 1500, 

and 2000 in the study. The data were generated for each simulation condition under the one-parameter 

logistic model for 10 binary (1-0 scored) items. The difference between the difficulty parameters of the 

groups was determined as 𝑑𝑘=0, 𝑑𝑘=0.1, 𝑑𝑘=0.3, 𝑑𝑘=0.5 and 𝑑𝑘=0.7. 𝑑𝑘= 0.0 (there is no difference 

between item difficulty parameters) were considered as invariant items and the difference between the 

parameters gradually increased (Verhagen et al., 2016). Harwell et al. (1996) stated that 100 or fewer 

replications would have sufficient power in simulation studies and recommended at least 25 replications. 

In the current study, 100 replications were applied for each condition. The analyses were carried out for 

each data set. Item difficulty parameter values for each condition can be seen in Annex-1.   

 

Data Analysis  

Bayesian analyzes were performed on the WINBUGS using the codes written in the R. For the difference 

between the difficulty parameters of each item, a Bayes factor was created to provide evidence for the 

measurement invariance. In hypothesis testing, the ratio of the density of the null hypothesis under the 

prior and posterior distributions affects the Bayes factor test results. The Bayes factor test results depend 

on priors selected for the parameters to be evaluated. The priors can be selected based on the assumptions 

accepted for the parameter values. Since the Bayes factor is more likely to support measurement 

invariance when multivariate Cauchy prior is used. The difference between group-specific item 

parameters is equally distributed under the multivariate Cauchy prior. Thus, the analyses were 

performed using the multivariate Cauchy prior (Verhagen et al., 2016, Thompson, 2018). The Savage–

Dickey density ratio, one of the MCMC sampling schemas, was used to calculate the Bayes factor.  

This method is applied in nested models, and the calculation of the Bayesian factor for the parameter 

under test requires high posterior and prior distribution. Especially in complex models, such as nested 

structures, this method can be used for invariance testing. In this model, the null hypothesis is the 

hypothesis that the value of the parameter of interest is fixed, and the alternative hypothesis is the 

hypothesis that this parameter is released. Therefore, the null hypothesis is nested under the alternative 

hypothesis (Wagenmakers, Lodewyckx, Kuriyal, and Grasman, 2010). The difference between item 

difficulty parameters for any of the two groups is defined as: 

 

𝑑𝑘= 𝑏𝑘1 − 𝑏𝑘2= 0 

 

The Bayes factor reduces the 𝐻0 to the prior and posterior distributions of the difference between 

parameters in the 𝐻1, when evaluating the relative support of the 𝐻0= 𝑑𝑘=0 according to the 𝐻1= 𝑑𝑘≠0 

hypothesis. In a simpler expression, it is obtained from the alternative hypothesis by setting it to 𝐻0= 0. 
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BF01=
𝑝1 (𝑑𝑘 = 0 | 𝐻1, 𝑌)

𝑝1 (𝑑𝑘 = 0| 𝐻1)
 

 

Thus, the Bayes factor produces more evidence for the null hypothesis than for the alternative hypothesis 

(Verhagen et al., 2016).  

The Bayes factor defines a relative estimation performance for the 𝐻0 and 𝐻1. In other words, it specifies 

a relative measure of the prediction quality of the hypothesis. For instance, if 𝐵𝐹01=5, it means that the 

data is 5 times more likely to be under 𝐻0 than under 𝐻1. However, the fact that the Bayes factor favors 

𝐻0 does not mean that 𝐻0 predicts the data better (van Doorn, van den Bergh, Böhm et al., 2021). 

According to Jeffreys (1961), the Bayes factors between 1 and 3 produce equal evidence for the null 

hypothesis and the alternative hypothesis, and these values are accepted as weak evidence. A Bayes 

factor between 3 and 10 is considered sufficient evidence for the 𝐻0  hypothesis. If the Bayes factor is 

greater than 10, it is accepted as strong evidence for the 𝐻0  hypothesis. When the Bayes factor is 

between 0.33 and 0.10, it is accepted as sufficient evidence for the alternative hypothesis, and when it 

is less than 0.1, it is accepted as strong evidence for the 𝐻1. In the current study, the cut-off point for the 

Bayes factor was determined as 3 if the invariance holds, and 0.33 if it does not hold. To complete the 

MCMC processes efficiently, the analysis was carried out with 3000 iterations with a 300 burn-in period.   

 

Findings 

The measurement invariance was tested when there is no difference between the difficulty parameters. 

The Results are shown in Table 1. 

 

Table 1 

The Bayes Factor Results for 𝑑𝑘=0.0 

  𝑩𝑭𝟎𝟏 

  
N=1000 

(500 per group) 

N=2000 

(1000 per group) 

N=3000 

(1500 per group) 

N=4000 

(2000 per group) 

𝒅𝒌=0.0 

Item_1 4.59773 6.30162 10.37240 18.34086 

Item_2 10.85618 10.0564 7.82427 16.83027 

Item_3 10.67626 11.04705 7.63375 11.0673 

Item_4 11.57481 9.56177 16.39697 15.62178 

Item_5 6.24642 11.08648 21.14449 14.84418 

Item_6 5.50773 6.36254 10.24370 19. 08634 

Item_7 10.97618 11.0004 8.84272 17.80372 

Item_8 12.67626 10.99905 7. 75363 12.00662 

Item_9 15.57481 9.59548 17.12697 16.16278 

Item_10 6.43642 13.08868 22.00443 15.73325 
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According to the results for 𝑑𝑘=0.0, in all sample sizes, it is seen that the 𝐵𝐹01 values of the item 

parameters are greater than the cut-off point of 3. When the group sizes are 500, 1000, and 1500, the 

𝐵𝐹01 values of 4 items were greater than 3, and the 𝐵𝐹01  values of 6 items were greater than 10. Since 

the group size is 2000, it is seen that 𝐵𝐹01 values for all items are greater than 10, which provides strong 

evidence for the measurement invariance. The Bayes factor test results can be seen in Table 2 when the 

difference between parameters is dk=0.1 for each sample size. 

 

Table 2 

Bayes Factor Results for  𝑑𝑘=0.1  

  𝑩𝑭𝟎𝟏 

  
N=1000 

(500 per group) 

N=2000 

(1000 per group) 

N=3000 

(1500 per group) 

N=4000 

(2000 per group) 

𝒅𝒌=0.1 

Item_1 9.53619 13.53914 3.94931 9.53863 

Item_2 3.32114 10.49564 10.93055 4.85995 

Item_3 8.24058 8.81567 20.05434 6.65487 

Item_4 11.84632 9.00784 12.1836 16.94075 

Item_5 7.99764 12.38298 9.74235 6.89683 

Item_6 9.78869 15.91453 3.00491 9.63375 

Item_7 5.32114 10.56449 11.04056 4.99502 

Item_8 8.42058 7.99815 21.45434 7.48765 

Item_9 13.87632 9.78400 13.18360 17.93081 

Item_10 8.19765 12.29809 9. 35945 7. 96828 

 

The results in Table 2 show that when the parameter differences are  𝑑𝑘=0.1, it is seen that 𝐵𝐹01 values 

are greater than 3 in all sample sizes. It is seen that measurement invariance is obtained for all items. In 

cases where the difference between the parameters is  𝑑𝑘=0.3, the Bayes factor results calculated based 

on the difference between the item difficulty parameters are given in Table 3. 

When the difference between item difficulties is 0.3, there are invariant items only n=500 and n=1000. 

The Bayes factor results for 6 items are invariant (n=500). However, there are 4 items producing equal 

evidence for both the null hypothesis and the alternative hypothesis. Therefore, those items cannot be 

interpreted as invariant. It was seen that if the group size was 1000 and the difference between the 

parameters was 0.3, the measurement invariance was obtained in 4 items. Invariance interpretation for 

2 items cannot be made because of the equal evidence for the hypotheses (𝐻0 and 𝐻1). 

 

 

 

 



Journal of Measurement and Evaluation in Education and Psychology 

____________________________________________________________________________________ 

___________________________________________________________________________________________________________________ 

ISSN: 1309 – 6575 Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi 

Journal of Measurement and Evaluation in Education and Psychology 26 

Table 3  

Bayes Factor Results for  𝑑𝑘=0.3 

  𝑩𝑭𝟎𝟏 

  
N=1000 

(500 per group) 

N=2000 

(1000 per group) 

N=3000 

(1500 per group) 

N=4000 

(2000 per group) 

𝒅𝒌=0.3 

Item_1 7.19235 10.3738 2.61409 0.02789 

Item_2 12.04128 1.12155 0.29342 0.05877 

Item_3 8.74905 0.20997 0.32324 0.09858 

Item_4 1.92266 4.18721 0.01816 0.27239 

Item_5 1.32949 0.0207 0.01307 0.13994 

Item_6 8.19235 13.3738 2. 96104 0.02789 

Item_7 11.94128 1.15585 0.19388 0.05877 

Item_8 7.14901 0.19997 0.23564 0.09858 

Item_9 0.99266 4.72118 0.02817 0.27239 

Item_10 2.31742 0.20700 0.01509 0.13994 

 

When the group size was 1500, there is not an invariant item. According to the Bayes factor results for 

n=1500, there are 2 items having equal evidence for both 𝐻0 and 𝐻1. That can be considered weak 

evidence for both hypotheses. It can be said that the values of 𝐵𝐹01 for the remaining 8 items are less 

than 0.33, and the items are not invariant. The Bayes factor results are less than 0.33 for n=2000 which 

means none of the items were invariant.  Table 4 shows the Bayes factor results calculated based on the 

difference between the item difficulty parameter which is  𝑑𝑘=0.5. 

 

Table 4  

Bayes Factor Results for  𝑑𝑘=0.5 

  𝑩𝑭𝟎𝟏 

  
N=1000 

(500 per group) 

N=2000 

(1000 per group) 

N=3000 

(1500 per group) 

N=4000 

(2000 per group) 

𝒅𝒌=0.5 

Item_1 0.15524 0.06085 0.00168 0.00016 

Item_2 0.18284 0.00891 0.01364 0.03911 

Item_3 4.09778 0.00085 0.00116 0.00415 

Item_4 0.35232 0.02586 0.06630 0.00147 

Item_5 4.31605 0.03253 0.00393 0.00135 

Item_6 0.23245 0.06857 0.01368 0.00012 
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Table 4  

Bayes Factor Results for  𝑑𝑘=0.5 (Continued) 

 Item_7 0.17294 0.00981 0.02264 0.01368 

𝒅𝒌=0.5 

Item_8 4.00038 0.00508 0.01015 0.00307 

Item_9 0.29852 0.01258 0.06730 0.00112 

Item_10 3.93167 0.03534 0.00298 0.00129 

 

As in Table 4, there are invariant items only for a group size of 500. In other group sizes, there are no 

items with a Bayes factor value greater than 3. When n=500, the 4 items are invariant, but the remaining 

items are not.  

In all remaining group sizes (n=1000, n=1500, and n=2000), all 𝐵𝐹01 values of the items are less than 

0.10, which provides strong evidence in favor of the 𝐻1 hypothesis. In Table 5, the Bayes factor results 

are shown for the cases where the difference between the difficulty parameters is  𝑑𝑘=0.7. 

 

Table 5  

Bayes Factor Results for  𝑑𝑘=0.7 

  𝑩𝑭𝟎𝟏 

  
N=1000 

(500 per group) 

N=2000 

(1000 per group) 

N=3000 

(1500 per group) 

N=4000 

(2000 per group) 

𝒅𝒌=0.7 

Item_1 0.32990 0.01297 0.00030 0.00003 

Item_2 0.00047 0.00172 0.00156 0.00020 

Item_3 0.00328 0.00136 0.00077 0.00113 

Item_4 0.00232 0.02296 0.00175 0.00008 

Item_5 0.06634 0.00223 0.00026 0.00026 

Item_6 0.26890 0.02129 0.00140 0.00002 

Item_7 0.00007 0.00147 0.00185 0.00009 

Item_8 0.00285 0.00163 0.00113 0.00126 

Item_9 0.00292 0.03295 0.00156 0.00017 

Item_10 0.07654 0.02019 0.00102 0.00032 

 

According to the Bayes factor test results shown in Table 5, there is no evidence for measurement 

invariance in all group sizes.  𝐵𝐹01values for 2 items are less than 0.33 only when the group size is 500, 

in all other cases, it was determined that the 𝐵𝐹01 value was less than 0.10 and produced strong evidence 

in favor of the 𝐻1 hypothesis. 
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Conclusion 

In the study, it was aimed to determine a cut-off point for measurement invariance based on the 

difference between parameters in different sample sizes and in cases where item parameters differed 

between groups with the Bayesian IRT model. 

According to simulation results; 

1. As predicted, it was determined that measurement invariance was achieved in all sample sizes 

when there was no difference between the difficulty parameters of the groups. 

2. When the difference between item difficulty parameters is dk=0.1, all items are invariant for all 

sample sizes. 

3. Bayes factor results for  𝑑𝑘=0.3 shows that only a few items are invariant if the group sizes are 

500 and 1000. It has been found that the number of invariant items decreases as the group size 

increases. When the group sizes are 1500 and 2000, the Bayes factor test results provide 

evidence for only the alternative hypothesis. Thus, there is no invariant item for these sample 

sizes. 

4. When the difference between item difficulty parameters is  𝑑𝑘=0.5, there are invariant items 

only in n=500. Bayes factor results provide strong evidence in favor of 𝐻1 for n=1000, n=1500, 

and n=2000. 

5. There is no evidence in favor of invariant items when  𝑑𝑘=0.7 for all sample sizes. 

When the results are evaluated, it is seen that no invariant item was detected independent of group size 

when the difference between the item difficulty parameters is  𝑑𝑘=0.7. In this situation, it is possible to 

state that if the item difficulty parameters difference between groups is 0.7, measurement invariance 

does not hold. 

 In cases where the  𝑑𝑘=0.5 and the sample size is 1000 or larger, it can be said that measurement 

invariance cannot be achieved. However, if the group size is n=500 or smaller, it is not possible to 

evaluate the invariance only based on the item parameter differences. For these sample sizes, it is 

recommended to perform a measurement invariance test at the item level.  

For  𝑑𝑘=0.3 and n=2000 or larger, the measurement invariance is not achieved. But, for n= 1500 or 

smaller, it is not correct to make a final decision for measurement invariance based solely on the 

differences among the item parameters. To make a decision on the measurement invariance, the 

invariance test must be performed.  

If there is no difference between difficulty parameters or  𝑑𝑘=0.1, it is possible to say that measurement 

invariance is achieved in all group sizes. 

There are many studies related to the Bayesian approximate invariance and alignment optimization 

method to determine Bayesian measurement invariance. On the other hand, the studies are limited to 

investigating measurement invariance with the Bayes factor. In the literature, Verhagen (2013) stated 

that the Bayes factor performs well in detecting the measurement invariance when the difference 

between the item difficulty parameters is large (𝑑𝑘>0.5). If there is a smaller difference (𝑑𝑘=0.1 or 

𝑑𝑘=0.3), the Bayes factor could not decide on invariance for most items. Also, Verhagen et al. (2016) 

have shown that the Bayes factor is a valid method for determining invariance when the difference 

between item difficulty parameters is 0.5 or more. It will be easier to detect measurement invariance 

with respect to the cut-off point, especially when group sizes are large.  Thompson (2018) has shown 

that the Bayes Factor distinguishes invariant and non-invariant items. 

In conclusion, providing measurement invariance is a prerequisite for meaningful comparisons, 

especially when comparisons between groups are required (Horn ve McArdle, 1992). The current study 

revealed that it is possible to have an idea about the measurement invariance based on item difficulty 

parameter differences and it creates a practical framework for doing meaningful comparisons across 

groups.  Defining which items are most likely to be invariant with the difference between item difficulty 

parameters, provides pragmatic information for measurement invariance and differential item 
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functioning studies.  The cut-off points presented in the study can be used in applications that are 

compatible with the conditions described in the research. In addition, as a secondary outcome, when an 

anchor item needs to be determined, the item selections can be made by considering the cut-off points 

𝑑𝑘=0.0 and 𝑑𝑘=0.1  

The current research is limited to the simulation conditions explained in detail in the method section, 

and binary items. Studies on polytomous items, unequal sample sizes, different simulation conditions, 

and real data applications can be conducted in future studies. Furthermore, the study focused on only 

the Bayes factor for detecting measurement invariance. In future applications, studies can be performed 

using not only the Bayes factor but also other Bayesian criteria such as Deviance Information Criteria 

(DIC).  
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Annex 1 

Difference 

between 

parameters 

Items Group 1 

N= 500 

Group 2 

N= 500 

Group 1 

N= 1000 

Group 2 

N= 1000 

Group 1 

N= 1500 

Group 2 

N= 1500 

Group 1 

N= 2000 

Group 2 

N= 2000 

=0.0 

Item_1 -1.51524 -1.51524 1.35099 1.35099 -0.14897 -0.14897 0.61867 0.61867 

Item_2 1.15225 1.15225 0.15923 0.15923 0.25329 0.25329 -1.20775 -1.20775 

Item_3 -0.58729 -0.58729 -1.04742 -1.04742 -0.13534 -0.13534 -0.08178 -0.08178 

Item_4 -1.17103 -1.17103 -2.31015 -2.31015 1.17636 1.17636 -0.95174 -0.95174 

Item_5 -0.19137 -0.19137 1.41825 1.41825 -0.44912 -0.44912 -1.66571 -1.66571 

Item_6 1.00173 1.00173 -0.8556 -0.8556 -0.85863 -0.85863 1.11071 1.11071 

Item_7 0.92033 0.92033 -0.22294 -0.22294 0.10577 0.10577 -0.18306 -0.18306 

Item_8 -0.19002 -0.19002 -0.1573 -0.1573 -0.77499 -0.77499 -0.09381 -0.09381 

Item_9 0.13939 0.13939 1.84483 1.84483 0.7638 0.7638 1.10559 1.10559 

Item_10 0.44124 0.44124 -0.17991 -0.17991 0.06784 0.06784 1.34887 1.34887 

=0.1 

Item_1 0.11130 0.21130 1.47472 1.57472 -1.14341 -1.04341 -1.25033 -1.15033 

Item_2 -1.42535 -1.52535 -0.72646 -0.82646 0.64185 0.54185 -0.98874 -1.08874 

Item_3 1.0506 1.1506 1.28423 1.38423 -0.23042 -0.13042 0.46737 0.56737 

Item_4 0.61857 0.51857 0.72544 0.62544 -0.14181 -0.24181 0.28588 0.18588 

Item_5 -1.17563 -1.07563 -1.6525 -1.5525 0.33662 0.43662 -0.4916 -0.3916 

Item_6 0.85522 0.75522 -0.6442 -0.7442 1.94682 1.84682 1.52708 1.42708 

Item_7 -0.72103 -0.62103 -0.2051 -0.1051 0.04659 0.14659 -0.2995 -0.1995 

Item_8 0.67932 0.57932 1.21579 1.11579 -0.46611 -0.56611 -1.12467 -1.22467 

Item_9 -1.13605 -1.03605 -0.84939 -0.74939 0.98127 1.08127 0.72206 0.82206 

Item_10 1.14304 1.04304 -0.62251 -0.72251 -1.97141 -2.07141 1.15243 1.05243 

=0.3 

Item_1 -0.83200 -0.53200 1.39128 1.69128 -0.24920 0.05080 0.31251 0.61251 

Item_2 2.23221 1.93221 -1.75713 -2.05713 -0.48799 -0.78799 -0.34488 -0.64488 

Item_3 1.19172 1.49172 -0.58153 -0.28153 0.23554 0.53554 0.28424 0.58424 

Item_4 -0.15327 -0.45327 1.3534 1.0534 0.28922 -0.01078 0.39478 0.09478 

Item_5 -0.85613 -0.55613 -0.49663 -0.19663 -1.10461 -0.80461 -1.6253 -1.3253 

Item_6 -1.24592 -1.54592 1.27965 0.97965 -0.53536 -0.83536 0.34952 0.04952 

Item_7 0.30058 0.60058 -0.97319 -0.67319 0.65091 0.95091 1.91602 2.21602 
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Annex 1 (Continued) 

=0.3 

Item_8 -0.37292 -0.67292 -0.18041 -0.48041 0.55902 0.25902 -0.05588 -0.35588 

Item_9 -0.49208 -0.19208 -0.22857 0.07143 1.61207 1.91207 -1.14867 -0.84867 

Item_10 0.22780 -0.07220 0.19312 -0.10688 -0.96959 -1.26959 -0.08233 -0.38233 

=0.5 

Item_1 1.01674 0.51674 0.69355 0.19355 0.38955 -0.11045 0.91923 0.41923 

Item_2 -0.78838 -0.28838 1.6497 2.1497 -0.76968 -0.26968 -0.24888 0.25112 

Item_3 -0.08844 -0.58844 -0.18656 -0.68656 1.59203 1.09203 -1.80859 -2.30859 

Item_4 -0.82591 -0.32591 0.92077 1.42077 0.83879 1.33879 -0.5192 -0.0192 

Item_5 0.88156 0.38156 0.36453 -0.13547 1.4836 0.9836 3.13911 2.63911 

Item_6 0.4986 0.9986 -0.801 -0.301 0.43809 0.93809 -1.70057 -1.20057 

Item_7 -0.47966 -0.97966 -0.60329 -1.10329 -0.74047 -1.24047 0.49179 -0.00821 

Item_8 -0.3249 0.1751 0.09697 0.59697 -1.30876 -0.80876 -0.14801 0.35199 

Item_9 -1.01617 -1.51617 -0.97367 -1.47367 -0.76574 -1.26574 0.23068 -0.26932 

Item_10 1.12655 1.62655 -1.16101 -0.66101 -1.15741 -0.65741 -0.35558 0.14442 

=0.7 

Item_1 -0.02227 -0.72227 -0.06218 -0.76218 0.99252 0.29252 1.78028 1.08028 

Item_2 0.29443 0.99443 2.12972 2.82972 0.43886 1.13886 0.3036 1.0036 

Item_3 -0.88435 -1.58435 -0.77638 -1.47638 0.32672 -0.37328 0.74875 0.04875 

Item_4 0.98951 1.68951 0.12361 0.82361 -0.37344 0.32656 -0.46008 0.23992 

Item_5 0.00746 -0.69254 -0.58109 -1.28109 0.21024 -0.48976 -0.46803 -1.16803 

Item_6 -1.44076 -0.74076 -0.1527 0.5473 0.35615 1.05615 -1.92719 -1.22719 

Item_7 -0.21819 -0.91819 -1.40278 -2.10278 -0.45817 -1.15817 0.59344 -0.10656 

Item_8 2.1256 2.8256 0.84659 1.54659 -1.23148 -0.53148 0.20459 0.90459 

Item_9 -0.54605 -1.24605 0.42517 -0.27483 -0.31452 -1.01452 0.34729 -0.35271 

Item_10 -0.30538 0.39462 -0.54997 0.15003 0.05311 0.75311 -1.12264 -0.42264 

 


