
492

A Comparative Case Study to Experiences of High School Students Using Text-Based

versus Hybrid-Based Environments in Programming Education1

Alper Ünal 2 Fatma Burcu Topu 3

To cite this article: Ünal, A., & Topu, F. B. (2022). A comparative case study to experiences of high

school students using text-based versus hybrid-based environments in programming education. e-

Kafkas Journal of Educational Research, 9, 492-512. doi:10.30900/kafkasegt.1053820

Research article Received:05.01.2022 Accepted:07.07.2022

Abstract

This study aimed to comparatively determine the experiences of high school students in programming

language education via text-based or hybrid-based programming environments. A comparative case

study was conducted in this study. The participants consisted of a total of 19 high school students with

no previous experience in any programming language, nine of them in the text-based programming

group and ten of them in the hybrid-based programming group. The qualitative data were obtained

with a semi-structured interview at the end of the 10-week programming education process and

analyzed by content analysis. The findings were presented in dimensions of difficulties and

conveniences in a programming language course, anxiety about the programming process, course

outcomes, and their preferences for future programming courses. In each dimension, even if common

codes were obtained for both groups in some themes, the effects of these codes on students differed in

each group. According to the findings, in the programming process, students faced some difficulties

and conveniences in terms of mental effort. While “trying to figure out where they made a mistake”

created a difficulty, “using comprehensible visual elements in the hybrid-based environment” as a

convenience had the highest frequency among the codes. Some situations caused learning anxiety in

students such as worry about failing, while others did not. The students achieved positive and negative

course outcomes. “Understanding the logic of coding and acquiring programming skills” which was

one of the positive outcomes had the highest frequency. In addition, students' preferences regarding

whether or not to attend the future programming courses changed for various reasons. “Unwilling to

programming language education” was one of these findings. Considering the scarcity of

programming education studies via text-based and hybrid-based programming environments, the

results and implications of this study are to strengthen future research by providing rich data.

Keywords: Text-based programming, hybrid-based programming, programming language education,

high school students

1 This study was derived from a part of the first author’s Master’s Thesis and organized by under the supervision

second author. Retrieved from Council of Higher Education database in Turkey (Thesis No. 551146).
2 Author, ICT Teacher, alpeerunal@hotmail.com, Ministry of National Education, Antalya, Turkey
3 Corresponding Author, Assist. Prof. Dr., burcutopu@hotmail.com, fburcu.topu@atauni.edu.tr, Atatürk

University, Kazım Karabekir Education Faculty, Erzurum, Turkey

https://orcid.org

e- Kafkas Eğitim Araştırmaları Dergisi (e-Kafkas Journal of Educational Research)

493

Programlama Eğitiminde Metin-Tabanlı ve Hibrit-Tabanlı Ortamları Kullanan Lise

Öğrencilerinin Deneyimlerine İlişkin Karşılaştırmalı Bir Durum Çalışması1

Alper Ünal2 Fatma Burcu Topu3

Atıf: Ünal, A., ve Topu, F. B. (2022). A comparative case study to experiences of high school students

using text-based versus hybrid-based environments in programming education. e- Kafkas Eğitim

Araştırmaları Dergisi, 9, 492-512. doi:10.30900/kafkasegt.1053820

Araştırma Makalesi Geliş Tarihi:05.01.2022 Kabul Tarihi: 07.07.2022

Öz

Bu çalışma, metin-tabanlı veya hibrit-tabanlı programlama ortamları ile yapılan programlama dili

eğitimine katılan lise öğrencilerinin deneyimlerini karşılaştırmalı olarak belirlemeyi amaçlamaktadır.

Karşılaştırmalı durum çalışmasının temel alındığı bu çalışmaya, herhangi bir programlama dili

deneyimi olmayan, dokuzu metin-tabanlı programlama grubunda ve onu hibrit-tabanlı programlama

grubunda toplam 19 lise öğrencisi katılmıştır. 10 haftalık programlama eğitimi sonunda yarı

yapılandırılmış görüşme ile elde edilen nitel verilere içerik analizi uygulanmıştır. Bulgular,

programlama dili dersindeki zorluklar ve kolaylıklar, programlama sürecine ilişkin kaygı, ders çıktıları

ve öğrencilerin gelecekteki programlama derslerine yönelik tercihleri boyutlarında sunulmuştur. Her

boyutta bazı temalarda her iki grup için ortak kodlar elde edilse de, bu kodların öğrenciler üzerindeki

etkileri gruplara göre farklılık göstermiştir. Elde edilen sonuçlara göre, programlama sürecinde

öğrenciler zihinsel çaba açısından bazı zorluklar ve kolaylıklarla karşılaşmışlardır. Kodlar arasında

“nerede hata yapıldığını bulmaya çalışmak” zorluk olarak, “hibrit tabanlı ortamda anlaşılır görsel

öğeleri kullanmak” kolaylık olarak en yüksek sıklığa sahiptir. Başarısızlık endişesi gibi bazı durumlar

öğrencilerde öğrenme kaygısına neden olurken, bazıları da kaygıya neden olmamamıştır. Öğrenciler

olumlu ve olumsuz ders çıktıları elde etmişlerdir. Olumlu sonuçlardan biri olan “kodlama mantığını

anlama ve programlama becerisi edinme” en yüksek sıklığa sahiptir. Ayrıca, öğrencilerin gelecekteki

programlama kurslarına katılıp katılmama tercihleri çeşitli nedenlerle değişmiştir. Bu bulgulardan biri

de “programlama dili eğitimine karşı isteksizlik”dir. Metin-tabanlı ve hibrit-tabanlı programlama

ortamları ile yapılan programlama eğitimi çalışmalarının azlığı göz önüne alındığında, bu çalışmanın

sonuçları ve çıkarımları, zengin veriler sağlayarak gelecekteki araştırmaları güçlendirecektir.

Anahtar Sözcükler: Metin-tabanlı programlama, hibrit-tabanlı programlama, programlama dili

eğitimi, lise öğrencileri

1 Bu çalışma, birinci yazarın yüksek lisans tezinin bir bölümünden derlenmiş ve ikinci yazar danışmanlığında

düzenlenmiştir. Türkiye Yükseköğretim Kurulu veri tabanından alınmıştır (Tez No. 551146).
2 Yazar, BTR Öğretmeni, alpeerunal@hotmail.com, Milli Eğitim Bakanlığı, Antalya, Türkiye
3 Sorumlu Yazar, Dr. Öğretim Üyesi, burcutopu@hotmail.com, fburcu.topu@atauni.edu.tr, Atatürk

Üniversitesi, Kazım Karabekir Eğitim Fakültesi, Erzurum, Türkiye

https://orcid.org

Ünal and Topu

494

Introduction

Nowadays, in many areas regarding information technology, the trend is shifting towards

producing and using programmable technological devices. It is a critical issue to raise the manpower

to provide rational solutions for these systems all over the world. For this reason, it is necessary to

provide learning environments to equip students with algorithmic thinking, programming skills, and

developing software by using a programming language (Hsu & Hwang, 2021; Jancheski, 2017; Shin,

Park, & Bae, 2013). Accordingly, many countries include information technology and computer

science courses in the curriculum to acquire students these skills at an early age (Demirer & Sak,

2016; Grover & Pea, 2013; Ministry of National Education [MoNE], 2017, 2018; Vaidyanathan,

2013).

The various programming languages such as C, Java, Python, etc. are preferred in

programming education. Each programming language has its syntax. Although the selection of

programming language differs according to the purpose of use, object-oriented Python is one of the

most commonly used programming languages (Github, 2019). Free download Python has a simpler

syntax than other common programming languages. It can be used easily in any environment

regardless of the platform as an open source without needing a compiler. These features make Python

a user-friendly and powerful programming language (Adi & Kitagawa, 2019; Lutz, 2013; Sanner,

1999). Thus, in line with the recommendation of the MoNE as well (Gülbahar & Kalelioğlu, 2018),

this study is based on the process of teaching Python programming language to high school students

without any programming language experience.

The programming languages include a wide range of subjects and various concepts expressed

in English. Beginner programmers need to learn the syntax and logic of the programming language, as

well as to design algorithms (Gomez, Moresi, & Benotti, 2019; Hsu & Hwang, 2021; Tuomi,

Multisilta, Saarikoski, & Suominen, 2018). However, many beginner programmers, due to their

inexperience in programming, try to memorize the general rules of these languages. This is a

remarkable factor that hinders the permanency of their programming success (Gomes & Mendes,

2007; Salleh, Shukur, & Judi, 2018). Computer programming is a complex mental process. It causes

the students more mental effort to effectively use their working memory (Asai, Phuong, Harada, &

Shimakawa, 2019; Kelleher & Pausch, 2005). It affects the learning process negatively (Mavilidi &

Zhong, 2019; Moreno, 2010; Sweller, 2010). In other words, it is likely to prevent the programming

education continues efficiently (Garner, 2002; Stachel et al., 2013; Yukselturk & Altiok, 2017). To

reduce the mental effort, it is suggested that comprehensive content is divided the pieces, and complex

tasks are presented from easy to difficult week by week. Thus, knowledge retention increases in long-

term memory (Çakiroğlu et al., 2018; Mavilidi & Zhong, 2019). In addition, mentioned factors above

may cause the learning process to continue with negative feelings such as boredom, low interest, high

anxiety, lack of self-confidence, reluctance toward learning a programming language, and even

interrupting it (Chang, 2005; Gomes & Mendes, 2007; Hsu & Hwang, 2021; Owolabi, Olanipekun, &

Iwerima, 2014; Tsai, 2019).

It is suggested to teach programming languages having simple syntax to students encountering

a text-based programming education for the first time. In addition, it can be preferred easy-to-use

block-based programming environments to facilitate algorithmic thinking. Thus, an opportunity arises

to reduce the negative emotions that discourage beginner programmers from acquiring programming

skills (Asai et al., 2018; Çakıroğlu, Çevik, Köşeli, & Karaman, 2021; Mumcu, Mumcu, & Çakıroğlu,

2021; Tsai, 2019; Topalli & Cagiltay, 2018; Yukselturk & Altiok, 2017). A block-based programming

environment consists of code blocks with various colours and features. In order to create an algorithm,

puzzle pieces-like block structures are easily combined by drag and drop (Gomez et al., 2019; López,

Otero, & García-Cervigón, 2021). Thanks to block-based environments, such as Scratch, Code.org,

and Alice, students make fewer syntax errors and have low cognitive challenges (Çakıroğlu et al.,

2021; Mumcu et al., 2021; Rahaman, Mahfuj, Haque, Shekdar, & Islam, 2020; Tsai, 2019), and they

also have a more positive attitude towards learning programming (Seraj, Katterfeldt, Bub, Autexier, &

Drechsler, 2019; Yukselturk & Altiok, 2017). Hsu and Hwang (2021) have revealed that students

engaging with block-based programming tasks have low programming anxiety and a more enjoyable

learning experience. Although, students cannot learn any programming language via mentioned block-

e- Kafkas Eğitim Araştırmaları Dergisi (e-Kafkas Journal of Educational Research)

495

based environments (Topalli & Cagiltay, 2018; Mumcu et al., 2021), this is possible via Google

Blockly as a hybrid-based programming environment (Fraser, 2015).

The hybrid-based programming environments have features of both text-based and block-

based programming environments (Weintrop & Wilensky 2018). In this way, hybrid-based

programming makes it possible to see the programming logic and syntax at the same time. One of

these environments is Blockly which transforms blocks into code syntax of various programming

languages (e.g. Python, Javascript), and shows visual and textual codes simultaneously (Jung, Nguyen,

& Lee, 2021; Rahaman et al., 2020; Weintrop & Wilensky 2017). It is also possible to add new

functions to the code blocks (Adi & Kitagawa, 2019; Bak et al., 2020; Fraser, 2015; Jung et al., 2021;

Valsamakis, Savidis, Agapakis, & Katsarakis, 2020). Blockly is impossible for students to make

syntax errors during the code writing by dragging and dropping the blocks. This enables students to

focus on programming logic (López et al., 2021). These features of Blockly reduce the complexity of

programming and facilitate beginner programmers to learn the programming languages (Chen et al.,

2021; Rahaman et al., 2020; Sano & Kagawa, 2019; Winterer et al., 2020). According to Adi and

Kitagawa (2019), Blockly is a convenient environment for novice programmers to start learning

Python programming language. On the other hand, in hybrid-based programming, students also need

to comprehend the logic of coding, while they combine blocks correctly. This may cause more mental

effort and also make it difficult for the learning process (Debue & Van De Leemput, 2014; Ionescu,

2021; Sweller, 2010). Considering these contradictory statements in the literature, it is important to

investigate students' experiences in the learning process of a programming language by using Blockly

as a hybrid-based programming environment.

Previous studies are mostly in the engineering field, and on the usability of a technological

system developed using Blockly (Adi & Kitagawa, 2019; Bak, Chang, & Choi, 2020; Chen, Chen, Yu,

& Lee, 2021; Ionescu, 2021; Jung et al., 2021; Rahaman et al., 2020; Rodríguez-Gil et al., 2019;

Weintrop, Shepherd, Francis, & Franklin, 2017; Winterer, Salomon, Köberle, Ramler, &

Schittengruber, 2020). There are also available studies using Blockly in programming education at

different grade levels. These studies are examined programming skills as well as the various variables

such as intention and attitude (Seraj et al., 2019; Yiğit, 2016), pedagogical interactions (López et al.,

2021), problem-solving (Bubnó & Takács, 2017), object-oriented programming concepts (Su & Hsu,

2017), interaction with various programming interfaces (Weintrop & Wilensky, 2018, 2019),

collaborative visual programming (Valsamakis et al., 2020).

On the other hand, there are studies in the literature comparing block-based and hybrid-based

programming environments. Seraj et al. (2019) compared Scratch versus Blockly, Weintrop and

Wilensky (2019) compared Snap! versus Pencil. cc. Only a few studies are comparing text-based

versus hybrid-based programming environments. Weintrop and Wilensky (2018) compared block-

based, text-based, and hybrid-based programming environments. As to Yiğit (2016), parallel to our

study, he compared text-based and hybrid-based programming environments. However, quantitative

research methods were used in these studies and statistical results were presented.

As for our study, we compared the programming experiences with the qualitative research

perspective of the high school students using a text-based programming environment (Python editor)

in one group and using a hybrid-based programming environment (Blockly) in the other group. This

study has a 10-week (40 hours) implementation process as a long period and presents detailed results

and implications to contribute to the literature concerning the use of text-based and hybrid-based

programming environments in the Python programming language learning process. In addition, our

study could make it possible to identify factors influencing students such as mental effort, anxiety,

self-confidence, and motivation for learning a programming language. Thus, it will guide future

studies on programming language education in high schools by ensuring rich data. This study is also

important in terms of improving the computer science course curriculum in high schools by MoNE.

Consequently, this study differs from previous studies in these aspects. Accordingly, the research

question of the study is following.

What are the experiences of students participating in programming language education via

text-based or hybrid-based programming environments?

Ünal and Topu

496

Method

Research Design

This study is based on a comparative case study, one of the qualitative research designs (Yin,

2003). This research design comparatively examines to understand the similarities and differences

between cases (Baxter & Jack, 2008; Stake, 2006). Accordingly, in the current study, the experiences

of high school students in one group using Python editor as a text-based programming environment

and in the other group using Blockly as a hybrid-based programming environment during the 10-week

Python programming language learning process were analyzed in detail. The results were presented

comparatively and holistically according to the groups. Thus, it was aimed to obtain detailed and rich

data on how different situations affect students' experiences, reveal similar and contrasting results, and

suggest implications (Barlett & Vavrus, 2017; Goodrick, 2014).

Participants

Participants consisted of 19 high school preparatory-grade students in total, 9 (7 girls, 2 boys)

in the text-based programming group and 10 (7 girls, 3 boys) in the hybrid-based programming group.

The students in both groups were determined with the purposive sampling method. These students did

not participate in any programming language training before and performed all of the 10-week Python

programming language tasks of our study. Accordingly, this study was conducted with volunteers

among these students to participate in the interview to obtain in-depth information about their

programming experiences.

Data Collection Instrument

A semi-structured interview form with ten questions was developed by researchers to reveal

the experiences of students in two groups using different programming platforms in detail. To increase

the reliability of the instrument, two information technology teachers, and instructional technologies

experts, female, and male students checked the intelligibility of questions in the interview form.

Interview questions were asked to two female and two male students who participated in the pilot

study in both groups. To ensure the validity and reliability of the study, before the interviews, the

researchers stated that the students would freely express their opinions and would not receive any

score because of their positive or negative opinions. They also emphasized the importance of their

opinions to make better this programming education process. The face-to-face interviews were

conducted with volunteer students in both groups at the end of the 10-week implementation process.

Accordingly, it was expected to explain the students' positive and negative thoughts about the Python

programming language learning process, and the reasons for challenging or facilitating in the

programming tasks, they performed with the used programming environment. In addition, it was asked

to express their programming achievements and intention to continue programming education in the

future. The interviews were voice recorded with permission from students to prevent the loss of data.

Process

 A 10-week Python programming language education was conducted with one group using the

Python editor in text-based programming and with the other group using Blockly environment in

hybrid-based programming in the computer science course the researchers. Prior to the

implementation, the label and text of blocks in Blockly were fixed according to the syntactic structure

of sections in Python programming language such as loops, functions, variables, etc.

Weekly task-based activities were developed according to Foundations of Programming unit

objectives and subjects (Variables, Conditional Statements, Decision Structures, Loops Structures,

Functions, and Lists) in high school computer science course (MoNE, 2018). These activities had the

same content in both groups, while the course was carried out based on different programming

approaches in each group. The programming codes in these activities were created with Python syntax

for the text-based programming group, whereas it was built with the blocks for the hybrid-based

programming group and was also possible to display Python syntax on the Blockly interface.

Screenshots of a programming activity that had different programming interfaces (Python editor in

text-based programming group and Blockly environment in hybrid-based programming groups) are

shown in Figure 1 below.

e- Kafkas Eğitim Araştırmaları Dergisi (e-Kafkas Journal of Educational Research)

497

Figure 1. Interfaces of Programming Environments Used in Text-Based and Hybrid-Based

Programming Groups

Before the implementation of this study, researchers obtained the Ethics Committee Approval

from the university that their work, and from the MoNE in Turkey. Researchers also got students'

permission in both groups by promising to keep their names confidential.

At the beginning of the implementation, during one week (four lessons), the computer science

teacher, the first researcher, introduced the programming environments to each group and explained

the programming education process. He also checked the technical infrastructure of the information

technology classrooms for the reliability of the study. 10-week implementation was 40 hours in total

for each group (weekly 4 lessons = 2 days * 2 hours). At the beginning of the first lesson of each

week, the teacher presented knowledge to students about the Python programming language subject of

that week. After that, as seen activity photos in Figure 2, students separately performed weekly

programming tasks in the text-based programming group and hybrid-based programming group.

Figure 2. Activity Photos of a Programming Task in Text-Based and Hybrid-Based Programming

Groups

Text-Based Programming Group (Python Editor)

Hybrid-Based Programming Group (Blockly)

Ünal and Topu

498

Following the students’ completion of the task, the teacher explained the correct textual

Python codes step by step to both groups. He also demonstrated the appropriate order of the blocks of

the task to the Blockly group. Thus, students who could not get the correct programming output were

also able to complete the task in both groups.

To prevent the loss of the data and to increase the validity and reliability of the study, it was

taken photos and video recordings throughout the process. After the whole implementation was

conducted as face-to-face interviews with volunteer students in each group (9 in the text-based

programming group and 10 in the hybrid-based programming group) by voice recording.

Data Analysis

Content analysis was conducted to reveal the students' experiences in the Python programming

language education process in detail and to comparatively present these findings (Merriam & Tisdell,

2015). Accordingly, first of all, the interview voice recordings collected from students in both groups

were transcribed into writing. Data were analyzed using Nvivo 12. The codes that were revealed for

each group were combined into themes. According to themes, the frequencies of codes in each group

were comparatively presented in tables and figures. These codes were also supported by the quotations

of students' statements (SX) in each group (TG for text-based programming group, HG for hybrid-

based programming group). To ensure the trustworthiness of the data analysis, the codes, frequencies,

themes, and quotations were checked by an instructional technology expert by comparing with photos

and videos taken throughout the process, and voice recordings obtained from the interviews.

Findings

According to the findings, even if common codes were obtained for both groups in some

themes, the effects of these codes on students differed in each group. The findings were presented in

the following titles: "difficulties and conveniences in a programming language course, anxiety about

programming process, course outcomes, and students’ preferences for future programming courses".

The codes in the tables and figures were shown in different colors according to the groups (HG: green,

TG: blue, Both Groups: orange), and were supported by sample quotations from the statements of the

students in each group (HG/TG, SX, Female/Male).

Difficulties and Conveniences in Programming Language Course

Students in HG and TG faced some difficulties and conveniences in terms of mental effort in

the programming language course. The findings are presented in Table 1.

Table 1.

Difficulties and Conveniences in Programming Language Course

Difficulties

Themes Codes f

Having extra mental

effort to understand

the programming

subjects

• Loops Structures 7

• Lists 5

• Functions 3

• Decision Structures 2

• Flowcharts/Algorithms 2

Finding the source of

error during

programming

• Trying to understand where one made a mistake/getting ambitious 10

• Trying over and over 6

• Feeling negative emotions (angry, bored) when writing erroneous codes 5

• Giving up 4

• Asking the classmates for help when one cannot finish the task in time/cannot do it 1

Having low

programming course

motivation

• Thinking the course is boring/unnecessary 6

• Considering the course as trivial 2

• Making enough efforts to pass the course exams 2

• Lack of interest in the programming course 1

Using programming

environment
• Getting used to a new programming environment 3

e- Kafkas Eğitim Araştırmaları Dergisi (e-Kafkas Journal of Educational Research)

499

Table 1. (Continued)

• Asking the teacher for help while using the programming environment and performing

tasks
3

• Coding in Python editor 2

• Using the English programming language 1

Using computer
• Dislike using computers 1

• Inability to use computers well 1

Conveniences

Themes Codes f

Using programming

environment

• Using explanatory/comprehensible visual elements in Blockly 4

• Coding in Python editor 2

• Using ready-made drag and drop code blocks in Blockly 1

• Using regulatable code blocks in Blockly 1

Understanding more

easily as increasing

the programming

experience

• Revising by doing example activities 3

• Getting used to the programming language 2

• Enjoying coding 1

• HG • TG • Both Groups

As seen in Table 1, various themes and codes emerged related to facing difficulties and

conveniences in terms of mental effort in the programming language course. According to these

findings, sample quotations from students' statements are as follows.

Having extra mental effort to understand the programming subjects

Some of the students in both groups had difficulty understanding loop structures, lists, and

functions especially because they were complicated and related to mathematics. Besides, some

students also stated that they had similar difficulties in decision structures, flow charts, and algorithms.

This caused the extra mental effort to understand the programming subjects. A student's statement: “…

I had difficulty in lists and loops structures. For example, when I made a mistake, the loop continued

endlessly. Then it was a bit annoying (HG, S10, Male).” Another student's statement: “I didn’t know

how and where to use “if-else” [decision structures] very well. I felt confused. I didn’t have difficulty

in writing but I didn’t understand the logic for it (TG, S19, Female).”

Finding the source of error during programming

The majority of the students in both groups said that they got ambitious in trying to understand

where they had made a mistake and never gave up trying again and again. Yet, some of the students

felt angry about making a mistake while coding and gave up coding. In addition, some of them in both

groups asked their friends for help when they could not finish tasks. Therefore they had difficulty

finding the source of the error during programming. A student's statement: “I made great efforts to

write the code, but when I could not catch up with my friends, I asked for their help (TG, S11,

Female).” The other students' statements are as follows.

I examined them one by one to see where I made a mistake. I corrected it and tried it again

when I found the mistake. I asked the teacher when I did not understand. I got ambitious to do

the right it. For this reason, I had difficulty in coding (TG, S14, Female).

When there was an error, I opened a new tab and wrote the program again. But I immediately

gave up when there was an error in the program again. I felt frightened and my hand began to

tremble (HG, S8, Female).

Having low programming course motivation

Some students in both groups said that they did not make any efforts or did not have any

difficulties because they thought the course was boring and unnecessary, because they considered the

course trivial and because they did not have interest in the course. This was the reason for low course

Ünal and Topu

500

motivation. However, there were also students in both groups who made enough effort to pass the

course exams. A student's statement: “I didn’t make any effort in this course and I had difficulty

because I thought it was unnecessary (TG, S12, Female).” Another student's statement: “I made efforts

in the exam to prove to what extent I had learned as I thought that it could be beneficial to me in the

future (HG, S9, Male).”

Using computers

Some of the students in the TG especially stated that their lack of interest and experience in

using computers was a disadvantage in this process. A student's statement: “… I did not like using

computers very much. So I had some difficulties when we were writing codes. The course content was

complex (TG, S17, Male).”

Using the programming environment

Some of the students in both groups stated that it was difficult to get used to a new

programming environment. So they needed teacher guidance to use the programming environment and

perform tasks. In addition, students in HG had difficulty in writing codes because of coding language

which is based on English. A student's statement: “I had difficulty in getting used to such an

environment [Python editor] because we faced it for the first time (TG, S15, Male).” Another student's

statement: “When I could not write codes at the first trial, I worried. I could do it at the second trial

with help from the teacher (HG, S6, Female).” Another student's statement: “I had difficulty at first.

Having it in a foreign language seemed complex to me. But then, I began to learn and get used to it as

I encountered the words (HG, S7, Female).”

 On the other hand, some of the HG students said that the availability of comprehensible visual

elements in the Blockly environment, the regulatability of ready code blocks, and using the drag and

drop method provided them with convenience. However, a minority of the TG students stated that

transferring the codes on the paper into the computer- Python editor- facilitated them to understand the

codes. Some students' statements are as follows. These different views of the students in each group

stemmed from the interface features of the programming environments used in text-based and hybrid-

based programming approaches.

I didn’t have difficulty using Blockly…because we could delete and add blocks using drag and

drop. That’s why it was more comfortable. The figures were more explanatory, they were

separated so we would not forget the codes right away (HG, S1, Female).

I had great difficulty when it was on paper. But it was easier to write codes in a programming

environment… at least I learned. I saw what happened [while my codes were working]. So, I

didn’t have any difficulties using Python editor (TG, S19, Female).

Understanding more easily as increasing the programming experience

Some students in both groups said that they overcame the difficulties as they became more

familiar with the programming language and performed example activities. In addition, a student in

the TG expressed not having any difficulty because of enjoying coding. A student's statement: “…I

began to like programming, coding and so on as I did activities. So, I did not have difficulty in coding

(TG, S14, Female).” Another student's statement is as follows. These findings revealed that no matter

which programming approach was taken as the basis, the increase in the programming experience of

the students made it easier to understand the programming language.

I had difficulty at first. But then, I became more and more familiar with the subject as I

encountered more activities. When I got used to it, I understood the underlying logic of

coding. And I had no longer difficulty noting down what the teacher did (HG, S7, Female).

Anxiety about Programming Process

It determined that some situations in the programming process caused learning anxiety in

students, while the others did not. The findings are presented in Table 2.

e- Kafkas Eğitim Araştırmaları Dergisi (e-Kafkas Journal of Educational Research)

501

Table 2.

Reasons for whether or not the Learning Anxiety in the Programming Process

Themes
Codes

Not Anxious f Anxious f

Making the

programming error

• Think everybody can make mistakes 9
• Fear of losing popularity in the

teacher’s eyes
4

• Not being hesitated to ask the teacher for

help
5 • Fear of confusing the codes 2

• Not being hesitated to make mistakes to

learn
4 • Worry about the success of classmates 1

• Worry about being mocked by

classmate
1

Being interested in a

programming course

• Like using computer 3 • Dislike using computer 1

• Considering the course as unnecessary/

underestimate
2

Being knowledge

about programming

course

• Attending an algorithm course

previously
3

• Attending a programming course for

the first time
1

Self-confidence • Belief in to able to succeed 1 • Worry about failing 5

• HG • TG • Both Groups

As seen in Table 2, in the programming process, various themes and codes emerged related to

situations that caused and not caused learning anxiety in students. According to these findings, sample

quotations from students' statements are as follows.

Making the programming error

Some of the students in both groups worried about confusing the programming codes and

losing popularity in the teacher's eyes. In addition, a few students in the HG were afraid of classmates'

reactions. A student's statement: “I feared to confuse the place and order of the codes. I had panic and

felt anxious because I thought about which one to do, this or that (HG, S9, Male).” Another student's

statement: “I felt a little bit anxious about the change of the teacher’s perspective if I could not do it

(TG, S17, Male).” Another student's statement: “I was ashamed of my friends about not being able to

do coding. Because some of them liked using computers whereas I did not know much (HG, S6,

Female).”

However, most of the students in both groups thought that they were not professionals in

programming, they did not hesitate to make a coding error and ask the teacher for help. A student's

statement: “I made a coding error. But I did not hesitate to ask for the teacher’s help (TG, S14,

Female). Another student's statement is as follows. These findings supported that making

programming errors caused anxiety in some students without considering in which group the students

were.

 I never hesitated to make a coding error. I was not a professional, this was my first year [in

programming]. I was at the stage of learning. There were lots of classmates who were trying to

learn, just like me (HG, S8, Female).

Being interested in a programming course

Some students in both groups liked using computers and did not feel any anxiety about the

programming course, a student in the TG thought the opposite because of disliking using a computer.

In addition, a few students in the HG and TG did not feel anxiety because of the belief of no need for

such a course. A student's statement: “I have been good with computers since I was 6-7 years old and

some games I played, some contained codes required at least a few English words. So, I didn’t feel

anxiety in this course (HG, S9, Male).” Another student's statement: “… I didn’t feel anxiety. It was

nice to do something related to computers. We were relaxed in IT class and this course (TG, S14,

Female).” Another student's statement: “I was not interested in this course so I did not listen to lessons

Ünal and Topu

502

(TG, S15, Male).” According to these findings, whether some students were interested in the lesson or

not, regardless of which group they were in, affected their programming anxiety.

Being knowledgeable about programming course

Some students in both groups did not feel anxiety about the programming course because of

attending the block-based algorithm course in secondary school. However, students in the HG stated to

felt learning anxiety because of attending such a course for the first time. A student's statement: “At

first, I felt a little bit anxious. Because I was going to learn a language I had never seen before, Python.

I was afraid of not being able to do it (HG, S1, Female).” Another student's statement: “I didn’t feel

much anxiety because we had also seen algorithm [Scratch] at secondary school, but I didn’t know it

would be like this [Python programming language] (TG, S16, Female).” Accordingly, participation in

algorithm training in previous years affected some students' anxiety about the programming language

course.

Self-confidence

Although a student in the HG believed to be able to achieve the learning objectives of the

programming course, some students in both groups were worried about failing. Accordingly, self-

confidence affected the programming anxiety. A student's statement: “I felt anxiety at first. Because I

thought it was a difficult course and I would not be successful (TG, S13, Female).” Another student's

statement is as follows.

 I did not feel anxiety because I thought of coding as a puzzle. First, I divided it into pieces

and I thought about where to start a piece of it. I did it immediately because combining puzzle

pieces was easy for me (HG, S8, Female).

Course Outcomes

Students in HG and TG achieved positive and negative course outcomes at the end of the

implementation process. The findings were presented in Figure 3. According to codes related to course

outcomes in Figure 3, sample quotations from students' statements are as follows.

• HG • TG • Both Groups

Figure 3. Findings Related to Course Outcomes

Understanding the logic of coding/acquiring programming skills and learning to create

software were identified as the common positive outcomes for both groups. A student's statement:

“…Now, I learned the logic of how to write programming codes (HG, S5, Male).” Another student's

Course
Outcomes

f=
4

Understanding the logic of
coding / acquiring
programming skills

Learning to create software

Learning how to solve a
problem step by step

Learning to draw lessons
from mistakes

Thinking that they have not
acuired any gains

e- Kafkas Eğitim Araştırmaları Dergisi (e-Kafkas Journal of Educational Research)

503

statement: “I learned lots of things related to programming languages in this course. I think that there

are lots of things I can do. For example, I can make a program (PG, S19, Female).”

One of the TG students learned to draw a lesson from his mistakes and another student learned

how to solve a problem step by step. A student's statement: “I learned what and how to do it step by

step when I encountered a problem (TG, S11, Female).” Another student's statement: “I think I learned

to draw a lesson from my mistakes in computer coding course (TG, S15, Male).” Yet, a student in the

HG stated that she had not acquired any gains in the course. This student's statement “I think I did not

learn anything. The course did not contribute to me (HG, S4, Female).” Consequently, some of the

students in both groups who attended this course achieved positive outcomes while very few had

negative outcomes.

Students’ Preferences for Future Programming Courses

The students’ preferences in the HG and TG whether to attend future programming courses or

not are presented in Figure 4. According to codes related to attending future programming courses in

Figure 4, sample quotations from students' statements are as follows.

• HG • TG • Both Groups

Figure 4. Students’ Preferences in HG and TG for Future Programming Courses

Many students in both groups believed that the programming knowledge was necessary for the

future, it would affect their choice of jobs in positive ways, and the knowledge in this field is a

requirement. A student's statement: “I think the knowledge about programming and coding will be

useful in choosing a department at university or in our future job. For this reason, it is a necessary

course (HG, S9, Male).” Another student's statement: “It is necessary to learn these things

[programming language]. If we choose IT at university, or a job in computers, it is necessary for us to

get prepared for the future (TG, S15, Male).”

A student in HG thought this course was enjoyable and a student in TG thought this course

was not tiring. For this reason, they wanted to attend this course in the future. A student's statement: “I

would still choose the course if it were elective. Because we had fun and we learned new things about

computers (HG, S7, Male).”

However, a few students in both groups did not want to attend the future programming course

because they did not have an interest in the course, they could not make sense of the need for learning

a programming language, and they considered it unnecessary, and useless and difficult course. In

addition, they preferred to have elective courses instead of compulsory courses. A student's statement:

“…I did not like this course because I had difficulty in it. I do not think it is a necessary course (TG,

• (willing) This knowledge will be necessary in the future (f=5)

• (willing) It affects my choice of jobs in positive ways (f=5)

• (unwilling) It is considered as an unnessary/useless/difficult course (f=4)

• (willing) The knowledge in this field is a requirement (f=4)

• (unwilling) I'm not interested in the course (f=2)

Both
Groups

• (willing) It is requered to learn compter-related information (f=3)

• (willing) this course is enjoyable (f=1)

• (unwilling) I will not use this knowledge in future (f=1)

HG

• (willing) This course is not tiring (f=2)

• (unwilling) I will not attend it, if it is an elective course (f=1)
TG

Ünal and Topu

504

S16, Female).” Another student's statement: “I think this course is unnecessary. It should have been

taught to students who liked, were interested in, and curious about it (HG, S4, Female).” Another

student's statement: “I would not participate in it if it was an elective course. Because we have just

started high school. In my opinion, there are more important courses than this course in high school

(TG, S15, Male).” Accordingly, the majority of students in both groups were eager to attend future

programming courses for various reasons whereas a few of them were not.

Discussion

In both groups, most of the students made an extra mental effort to understand programming

subjects especially Loops Structures, Lists, and Functions. Çakıroğlu et al. (2021) revealed that

students could not complete the nested repeat block task in mobile code activities. It can be said that

this compelling situation is independent of the coding environment, and is caused by the nature of the

programming subject content. Many students had also difficulty finding the source of the error during

programming, and they tried over and over to correct the errors. Weintrop and Wilensky (2019) found

similar results in a study that measured students' success and error levels to our study. Although this

situation challenges students mentally, it is not considered a negative finding as it is a natural part of

the programming process. However, some of the students, who had negative feelings such as getting

angry and bored when they wrote erroneous code, got ambitious whereas some of them gave up. This

situation encountered in both groups proved that the students' reactions were not related to text-based

or hybrid-based programming approaches. Li (2016) reported that users acted such reactions during

the programming process. The various scaffold models can be used to reduce mental effort according

to the reactions observed in students during programming tasks (Salleh et al., 2018).

The majority of the students in both groups stated that they did not fear making programming

errors, and were able to learn the programming skill by making mistakes. According to Asai et al.

(2019), the long-period implementation in programming education may help students become familiar

with programming concepts and overcome programming anxiety. In our 10-week programming

training, the programming tasks performed by the students in both groups from simple to complex

may have provided this result. As in our study, we recommend that the future studies spread over a

long period as well.

On the other hand, It was determined that some students in both groups feared making the

programming error. One of the reasons for this is the fear of losing popularity in the teacher's eyes. In

addition, a few students, participating in hybrid-based programming, worried about classmates'

reactions when they made a programming error. Rogerson and Scott (2010) emphasized that such

external factors increased learning anxiety. This finding was in contrast with Hsu and Hwang (2021)'s

study which determined that students engaging with block-based programming tasks had low

programming anxiety. The finding of "classmate pressure", which emerged in our study and was not

encountered in previous studies, is an important keyword that should be considered to reduce learning

anxiety in the programming process. In future studies based on hybrid-based programming, it is

recommended to take measures to prevent this pressure.

Some students in both groups worried about failing to learn the programming language and

were not confident about it. This caused learning anxiety in students. For instance, a student in a

hybrid-based programming group was worried about attending such training for the first time.

According to Bosch and D'Mello (2017), the reason for such feeling was a lack of knowledge about

the course. Regardless of the students who were in which group, those who attended an algorithm

course previously did not feel any anxiety about the programming course. It may be able to increase

the self-confidence of students by using a method to reduce negative self-assessment of them during

the programming process (Gorson & O'Rourke, 2020).

In BG, most of the students thought that the interface features of a hybrid-based programming

environment made programming easier. In addition, a student participating in hybrid-based

programming did not have such anxiety and believed to be able to succeed in learning a programming

language. Weintrop and Wilensky (2019) found out that students use Pencil. cc, a hybrid-based

programming environment like Blockly, had self-confidence in terms of programming skills.

Moreover, the studies in literature explained that students, who engaged with programming tasks in

e- Kafkas Eğitim Araştırmaları Dergisi (e-Kafkas Journal of Educational Research)

505

such environments, had a more enjoyable learning experience and they felt that the programming

process was easier (Adi et al., 2019; Hsu & Hwang, 2021; López et al., 2021; Rahaman et al., 2020).

As a matter of fact, hybrid-based programming environments such as Blockly has the potential to

reduce complexity in programming education, as it enables to see both the real programming code

structure and blocks at the same time (Bak et al., 2020; Rodríguez-Gil et al., 2019; Sano & Kagawa,

2019). Therefore, it can be said that hybrid-based programming environments are suitable for novice

programmers to start learning a programming language (Adi et al., 2019; Rahaman et al., 2020). On

the contrary, Çakiroğlu et al. (2018) determined that the buttons, colors, and drag/drop features of the

block-based programming environment increased the mental effort. Trying to catch the logic of coding

while combining the blocks correctly requires focusing on multiple parameters. This may make

difficult learning (Ionescu, 2021). These contrasting findings may have resulted from based on

different programming approaches in the studies.

In our study, some of the students had difficulty in text-based programming and needed help

the classmates while they were performing the programming tasks. Asai et al. (2019), and Topalli and

Cagiltay (2018) confirmed that text-based programming required more mental effort. However, some

others stated that using a text-based programming environment made writing code easier and thus,

they enjoyed coding. Weintrop et al. (2017) also determined that a text-based programming

environment improved students' programming abilities similar to professional programmers compared

to a block-based one. This finding offers a different perspective for future studies.

In both groups, a small number of students had difficulty getting used to a new programming

environment. Similar statements were also quoted in the literature (Moons & De Backer, 2013; Shih

2017). This factor affecting the process in negative ways just at the beginning of teaching

programming can be explained as an innovation effect. Moreover, these students also needed teacher

guidance while using the programming environment. This guidance is seen as an important factor to

facilitate the programming language learning process, as it can reduce students' mental efforts and

negative beliefs (Asai et al., 2019; Gorson & O'Rourke, 2020). Yet, during the 10 weeks, these

students stated that they got used to the programming environment as the weeks go by and

comprehended the programming language more easily as performing the various programming tasks

each week. This is evidence that getting experience makes a less mental effort (Gomez et al., 2019;

Mavilidi & Zhong, 2019). Accordingly, it can be said that novice programmers have an opportunity to

improve their programming abilities thanks to these activities spreading over a long period.

A few students who did not like to use computers had learning difficulties and anxiety in the

text-based programming process. According to Weintrop and Wilensky (2019), students whether or

not liked the computer science course affected their attitudes toward participating in text-based

programming activities. On the other hand, the majority of students in both groups did not feel anxiety

about learning programming as they liked to use the computer. Owolabi et al. (2014) stated that

computer proficiency reduced computer anxiety, and this might indirectly affect learning anxiety. In

this case, it seems that this finding in our study was independent of the use of programming

environments based on different programming approaches. Therefore, this is an interesting result that

can direct new studies.

Although the significance of this course was explained to participants at the beginning of the

implementation, few students in both groups thought that the lessons were boring, unnecessary, and

unimportant. These students with no learning anxiety did not consider taking the course again, as they

were not interested in this course. As Bubnó and Takács (2017) emphasized, eliminating this negative

perception had a great role in achieving success in programming education. In addition, these students

with low motivation had difficulties in the programming education process. Salleh et al. (2018) also

stated that low motivation caused to increase the mental effort. According to the codes revealed in our

study, the reason for this was the efforts of these students to pass this course instead of acquiring

programming skills. Such a result for high school students was not available in previous studies,

because the majority of these studies were conducted in engineering fields, not in high schools. For

this reason, this interesting result in our study needs to be proven by new research.

Ünal and Topu

506

In both groups, understanding the logic of coding, acquiring the programming skills, and

learning to create software were achieved in the learning outcomes. These outcomes are among the

target achievements determined by MoNE (2017). Thus, it can be said that this study has a positive

effect on many students regardless of text-based and hybrid-based programming approaches. This

result also shows that the instructor has well managed this implementation process, and has assigned

the appropriate programming tasks to students considering their experiences. In addition, learning how

to solve a problem step by step and understanding the programming errors were among the learning

outcomes of students participating in text-based programming. These findings are evidence that

learning a programming language improves problem-solving skills, and increases the desire to reach a

solution for students (Lye & Koh, 2014). However, a student participating in hybrid-based

programming claimed not to acquire any gain in this course. This result could stem from disregarding

the course. Shih (2017) also determined that some university students performing the hybrid-based

programming tasks exhibited low programming learning behavior.

In our study, a student participating in hybrid-based programming wanted to attend the future

programming course again because of the enjoyable lessons. According to Seraj et al. (2019), students

who performed hybrid-based programming tasks using the Blockly environment stated that this was a

more interesting environment to improve their programming experience in the future. Considering

these positive results, it is seen that hybrid-based programming which can be used for both textual and

visual coding is a favorable approach for teaching any programming language. In both groups, the

majority of the students emphasized the importance of knowing the computer science field and the

necessity of programming education. In the study of Weintrop and Wilensky (2017), students

participating in both block-based and text-based programming expressed similar statements. In their

study, especially the students performing the text-based programming tasks expressed that such

environments were important for professionalization in programming. On the other hand, even if the

most of participants in our study were female, they expressed that programming education was

important and necessary. However, Hsu and Hwang (2021) stated that female students had a low

interest in programming. Although there is no analysis regarding gender in the focus of our study, this

finding will strengthen further studies.

Conclusion and Implications

This study offers a detailed perspective in terms of comparing the experiences of a group

participating in text-based programming and the other group participating in hybrid-based

programming. Therefore, the results obtained from the interviews in this study provide a rich data

source in terms of giving ideas to instructional designers, instructors, and researchers regarding

programming language education. In this study, during the 10-week-long programming language

training, the majority of students in both groups realized the necessity of learning a programming

language. This implementation process is an indicator that this awareness takes a long period to

become a culture. For this reason, it is recommended that MoNE include courses at each grade level

that will improve programming skills. On the other hand, some of the high school students in this

study may have participated in algorithm training by using the block-based programming environment

while in secondary school. The possibility of this situation affecting the results of the hybrid-based

group is a limitation of this study.

According to Bubnó and Takács (2017), students need to realize that they should not be afraid

of computer programming, but rather, it is a process of mathematical problem solving through a

machine. Therefore, it is necessary to offer various ways to them which can help to understand the

programming languages. It is recommended to answer the needs of inexperienced/novice programmers

that programming experts, instructional designers, and instructors, jointly develop the programming

environments and conduct the programming language activities. At this point, hybrid-based

programming environments can be used to increase students' beliefs about how to be able to succeed,

motivation, and self-confidence to learn programming languages by having an enjoyable learning

experience. In particular, as learners facing a programming language for the first time may feel

anxiety, a hybrid-based programming approach that offers a variety of ease-of-use can be based to

minimize this anxiety. In addition, students' interest can be increased in learning a programming

language by performing more programming tasks and activities highlighting the necessity of this

e- Kafkas Eğitim Araştırmaları Dergisi (e-Kafkas Journal of Educational Research)

507

course. Even if, these implementations, such as in our study, do not eliminate all programming

difficulties, they can allow students to focus on logic and structures in programming rather than

worrying about the basics of programming languages (Kelleher & Pausch, 2005).

Consequently, this study offers some practical implications for instructors and researchers.

It is recommended that programming language training spreads over long-period

implementation in order to improve the students' programming experience and thus, overcome

programming anxiety and increase their self-confidence.

In this study, individual programming activities were carried out. In future studies based on

text-based or hybrid-based programming, assigning students collaborative programming tasks maybe

prevent the classmate pressure. Thus, it can be compared with the results of this current study by

investigating whether group activities cause positive changes in students' programming experiences.

As hybrid-based programming environments such as Blockly enable us to see both the real

programming code structure and blocks at the same time it is likely to reduce complexity in

programming education. Therefore, novice programmers may use to start learning a programming

language.

In this study, Python editor was used in text-based programming and Blockly environment in

hybrid-based programming for the Python programming language training. To verify the results of our

study, it is recommended that more studies be conducted on programming language education just

included in the high school curriculum.

Ünal and Topu

508

Lisans Bilgileri

e-Kafkas Eğitim Araştırmaları Dergisi’nde yayınlanan eserler Creative Commons Atıf-Gayri Ticari

4.0 Uluslararası Lisansı ile lisanslanmıştır.

Copyrights

The works published in the e-Kafkas Journal of Educational Research are licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License.

Authors Contributions

A.Ü. carried out the implementation process, methodology, recourses, data collection, data analysis,

validation, literature review, and original master’s thesis writing. F.B.T. as a master’s thesis supervisor

managed the whole implementation process, methodology, recourses, data collection, data analysis,

validation, literature review, and checked out the original master’s thesis considering the IMRAD.

A.Ü. wrote the first draft of the manuscript. F.B.T. as a corresponding author conducted the all further

draft processes of manuscript.

Ethical Approval

In this study, the authors declare that they have complied with the rules specified in the “Scientific

Research and Publication Ethics Directive of Council of Higher Education” and have taken none

of the actions specified in the “Contrary Actions to Scientific Research and Publication Ethics”.

Furthermore all authors certify to have contributed to the study, and have participatied sufficiently

in this study to take public responsibility for the content, including participation in the concept,

design, analysis, writing, or revision of the paper. They also declare that they have no conflict of

interest, and the responsibility for any ethical violation belongs to the authors of this paper.

Ethics Committee Consent Information

Ethics Committee for the Implementation School: Ministry of National Education

Approval Date: May 15, 2018

Approval Number: 98057890-605.01-E.9496638

Ethics Committee of the University: Atatürk University Graduate School of Educational Sciences

Approval Date: May 23, 2018

Approval Number: 88179374-300-E.1800159222

e- Kafkas Eğitim Araştırmaları Dergisi (e-Kafkas Journal of Educational Research)

509

References

Adi, P. D. P., & Kitagawa, A. (2019, November). A review of the Blockly programming on M5Stack

board and MQTT based for programming education. In 2019 IEEE 11th International

Conference on Engineering Education (ICEED) (pp. 102-107). IEEE.

doi:10.1109/ICEED47294.2019.8994922

Asai, S., Phuong, D. T. D., Harada, F., & Shimakawa, H. (2019). Predicting cognitive load in

acquisition of programming abilities. International Journal of Electrical & Computer

Engineering, 9(4), 2088-8708. doi:10.11591/ijece.v9i4.pp3262-3271

Bak, N., Chang, B. M., & Choi, K. (2020). Smart Block: A visual block language and its programming

environment for IoT. Journal of Computer Languages, 60, 100999.

doi:10.1016/j.cola.2020.100999

Bartlett, L., & Vavrus, F. (2017). Comparative case studies: An innovative approach. Nordic Journal

of Comparative and International Education (NJCIE), 1(1), 5-17. doi:10.7577/njcie.1929

Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and implementation

for novice researchers. The Qualitative Report, 13(4), 544-559. Retrieved August, 10, 2021.

http://www.nova.edu/ssss/QR/QR13-4/baxter.pdf

Bosch, N., & D’Mello, S. (2017). The affective experience of novice computer programmers.

International Journal of Artificial Intelligence in Education, 27(1), 181-206.

doi:10.1007/s40593-015-0069-5

Bubnó, K., & Takács, V. L. (2017, September). The mathability of word problems as initial computer

programming exercises. In 2017 8th IEEE International Conference on Cognitive

Infocommunications (CogInfoCom) (pp. 39-44). IEEE.

doi:10.1109/coginfocom.2017.8268213

Chang, S. E. (2005). Computer anxiety and perception of task complexity in learning programming-

related skills. Computers in Human Behavior, 21(5), 713-728. doi:10.1016/j.chb.2004.02.021

Chen, T. L., Chen, Y. R., Yu, M. S., & Lee, J. K. (2021). NNBlocks: A Blockly framework for AI

computing. The Journal of Supercomputing, 1-31. doi:10.1007/s11227-021-03631-9

Çakıroğlu, Ü., Çevik, İ., Köşeli, E., & Karaman, M. (2021). Understanding Students’ Abstractions in

Block-Based Programming Environments: A Performance based Evaluation. Thinking Skills

and Creativity, 41(2021), 100888. doi:10.1016/j.tsc.2021.100888

Çakiroğlu, Ü., Suiçmez, S. S., Kurtoğlu, Y. B., Sari, A., Yildiz, S., & Öztürk, M. (2018). Exploring

perceived cognitive load in learning programming via Scratch. Research in Learning

Technology, 26. 1-20. doi: 10.25304/rlt.v26.1888

Debue, N., & Van De Leemput, C. (2014). What does germane load mean? An empirical contribution

to the cognitive load theory. Frontiers in Psychology, 5, 1099. doi:10.3389/fpsyg.2014.01099

Demirer, V., & Sak, N. (2016). Programming education and new approaches around the world and in

Turkey. Journal of Theory and Practice in Education, 12(3), 521-546. Retrieved December,

16, 2019. https://dergipark.org.tr/en/download/article-file/262355

Fraser, N. (2015). Ten things we've learned from Blockly. In 2015 IEEE Blocks and Beyond Workshop

(Blocks and Beyond) (pp. 49-50). IEEE. doi:10.1109/blocks.2015.7369000

Garner, S. (2002). Reducing the cognitive load on novice programmers. In Proceedings of ED-MEDIA

World Conference on Educational Multimedia, Hypermedia & Telecommunications (pp. 578-

583). AACE. Retrieved December, 06, 2019. https://files.eric.ed.gov/fulltext/ED477013.pdf

GitHub (2019). Retrieved November, 15, 2019. https://octoverse.github.com/

Gomes, A., & Mendes, A. J. (2007, June). Learning to program-difficulties and solutions. In

International Conference on Engineering Education (ICEE). Retrieved November, 20, 2018.

http://icee2007.dei.uc.pt/proceedings/papers/411.pdf

Gomez, M. J., Moresi, M., & Benotti, L. (2019). Text-based programming in elementary school: A

comparative study of programming abilities in children with and without block-based

experience. In Proceedings of the Conference on Innovation and Technology in Computer

Science Education (pp. 402-408). ACM. doi:10.1145/3304221.3319734

Goodrick, D. (2014). Comparative case studies. Methodological briefs-impact evaluation no. 9 (No.

innpub754). Retrieved August, 10, 2021. https://www.unicef-

irc.org/publications/pdf/brief_9_comparativecasestudies_eng.pdf

Ünal and Topu

510

Gorson, J., & O'Rourke, E. (2020, August). Why do CS1 students think they're bad at programming?

Investigating self-efficacy and self-assessments at three universities. In Proceedings of the

ACM Conference on International Computing Education Research (pp. 170-181). ACM.

doi:10.1145/3372782.3406273

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.

Educational Researcher, 42(1), 38-43. doi:10.3102/0013189X12463051

Gülbahar, Y., & Kalelioğlu, F. (2018). Bilişim teknolojileri ve bilgisayar bilimi: Öğretim programı

güncelleme süreci. Millî Eğitim Dergisi, 47(217), 5-23. Retrieved July, 27, 2021.

https://dergipark.org.tr/tr/download/article-file/539818

Hsu, T. C., & Hwang, G. J. (2021). Interaction of visual interface and academic levels with young

students’ anxiety, playfulness, and enjoyment in programming for robot control. Universal

Access in the Information Society, 1-13. doi:10.1007/s10209-021-00821-3

Ionescu, T. B. (2021). Leveraging graphical user interface automation for generic robot

programming. Robotics, 10(1), 3. doi:10.3390/robotics10010003

Jancheski, M. (2017). Improving teaching and learning computer programming in schools through

educational software. Olympiads in Informatics, 11, 55-75. doi:10.15388/ioi.2017.05

Jung, K., Nguyen, V. T., & Lee, J. (2021). BlocklyXR: An interactive extended reality toolkit for

digital storytelling. Applied Sciences, 11(3), 1073. doi:10.3390/app11031073

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing Surveys

(CSUR), 37(2), 83-137. doi:10.21236/ada457911

Li, X. (2016). Application of cognitive load theory in programming teaching. Journal of Higher

Education Theory and Practice, 16(6), 57-65. Retrieved December, 01, 2017.

http://www.m.www.na-businesspress.com/JHETP/LiX_Web16_6_.pdf

López, J. M. S., Otero, R. B., & García-Cervigón, S. D. L. (2021). Introducing robotics and block

programming in elementary education. Revista Iberoamericana de Educación a Distancia

(RIED), 24(1), 95-113. doi:10.5944/ried.24.1.27649

Lutz, M. (2013). Learning Python: Powerful object-oriented programming. 5th ed. O'Reilly Media,

Inc.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking

through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61.

doi:10.1016/j.chb.2014.09.012

Mavilidi, M. F., & Zhong, L. (2019). Exploring the development and research focus of cognitive load

theory, as described by its founders: Interviewing John Sweller, Fred Paas, and Jeroen van

Merriënboer. Educational Psychology Review, 1-10. doi:10.1007/s10648-019-09463-7

Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation.

John Wiley & Sons.

MoNE (2017). Bilgisayar bilimi dersi öğretim programı. Retrieved November, 30. 2017.

http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=374

MoNE (2018). Bilgisayar bilimi dersi (kur 1-2) öğretim programı. Retrieved Jenuary, 10, 2018.

http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=335

Moons, J., & De Backer, C. (2013). The design and pilot evaluation of an interactive learning

environment for introductory programming influenced by cognitive load theory and

constructivism. Computers & Education, 60(1), 368-384. doi: 10.1016/j.compedu.2012.08.009

Moreno, R. (2010). Cognitive load theory: More food for thought. Instructional Science, 38(2), 135-

141. doi:10.1007/s11251-009-9122-9

Mumcu, H. Y., Mumcu, S., & Çakıroğlu, Ü. (2020). Use of Arithmetic Operation Skills in Block

Based Programming Environments: A Comparative Case Study. Journal of Computer and

Education Research, 8(16), 404-427. doi:10.18009/jcer.705822

Owolabi, J., Olanipekun, P., & Iwerima, J. (2014). Mathematics ability and anxiety, computer and

programming anxieties, age and gender as determinants of achievement in basic

programming. GSTF Journal on Computing (JoC), 3(4), 109-114. doi:10.7603/s40601-013-

0047-4

Rahaman, M. M., Mahfuj, E., Haque, M. M., Shekdar, R. S., & Islam, K. Z. (2020). Educational robot

for learning programming through Blockly based mobile application. Journal of

e- Kafkas Eğitim Araştırmaları Dergisi (e-Kafkas Journal of Educational Research)

511

Technological Science & Engineering (JTSE), 1(2), 21-25. Retrieved August, 09. 2021.

https://rsepress.com/index.php/jtse/article/view/15/45

Rodríguez-Gil, L., García-Zubia, J., Orduña, P., Villar-Martinez, A., & López-De-Ipiña, D. (2019).

New approach for conversational agent definition by non-programmers: A visual domain-

specific language. IEEE Access, 7, 5262-5276. doi:10.1109/access.2018.2883500

Rogerson, C., & Scott, E. (2010). The fear factor: How it affects students learning to program in a

tertiary environment. Journal of Information Technology Education: Research, 9, 147-171.

Retrieved December, 01, 2017. https://www.learntechlib.org/p/111361/.

Salleh, S. M., Shukur, Z., & Judi, H. M. (2018). Scaffolding model for efficient programming learning

based on cognitive load theory. International Journal of Pure and Applied Mathematics, 118(7

Special Issue), 77-82. Retrieved February, 21, 2019. https://acadpubl.eu/jsi/2018-118-7-

9/articles/7/10.pdf

Sanner, M. F. (1999). Python: A programming language for software integration and development. J

Mol Graph Model, 17(1), 57-61. Retrieved November, 18, 2019.

https://www.academia.edu/1831560/Python_a_programming_language_for_software_integrati

on_and_development?from=cover_page

Sano, Y., & Kagawa, K. (2019). Design of a programming environment for non-procedural

programming languages using Blockly. The International Journal of E-Learning and

Educational Technologies in the Digital Media (IJEETDM), 5(3), 93-101.

doi:10.17781/p002614

Seraj, M., Katterfeldt, E. S., Bub, K., Autexier, S., & Drechsler, R. (2019, November). Scratch and

Google Blockly: How girls’ programming skills and attitudes are influenced. In Proceedings

of the 19th Koli Calling International Conference on Computing Education Research (pp. 1-

10). ACM. doi:10.1145/3364510.3364515

Shih, W. C. (2017, June). Mining learners' behavioral sequential patterns in a Blockly visual

programming educational game. In 2017 International Conference on Industrial Engineering,

Management Science and Application (ICIMSA) (pp. 1-2). IEEE.

doi:10.1109/ICIMSA.2017.7985594

Shin, S., Park, P., & Bae, Y. (2013). The effects of an information-technology gifted program on

friendship using scratch programming language and clutter. International Journal of

Computer and Communication Engineering, 2(3), 246. Retrieved November, 18, 2019.

http://www.ijcce.org/papers/181-J028.pdf

Stachel, J., Marghitu, D., Brahim, T. B., Sims, R., Reynolds, L., & Czelusniak, V. (2013). Managing

cognitive load in introductory programming courses: A cognitive aware scaffolding tool.

Journal of Integrated Design and Process Science, 17(1), 37-54. doi:10.3233/jid-2013-0004

Stake, R. E. (2006). Multiple case study analysis. New York, NY: The Guilford Press

Su, J. M., & Hsu, F. Y. (2017, July). Building a visualized learning tool to facilitate the concept

learning of object-oriented programming. In 2017 6th IIAI International Congress on

Advanced Applied Informatics (IIAI-AAI) (pp. 516-520). IEEE. doi:10.1109/IIAI-

AAI.2017.180

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load.

Educational Psychology Review, 22(2), 123-138. doi:10.1007/s10648-010-9128-5

Topalli, D., & Cagiltay, N. E. (2018). Improving programming skills in engineering education through

problem-based game projects with Scratch. Computers & Education, 120, 64-74.

doi:10.1016/j.compedu.2018.01.011

Tsai, C. Y. (2019). Improving students' understanding of basic programming concepts through visual

programming language: The role of self-efficacy. Computers in Human Behavior.

doi:10.1016/j.chb.2018.11.038

Tuomi, P., Multisilta, J., Saarikoski, P., & Suominen, J. (2018). Coding skills as a success factor for a

society. Education and Information Technologies, 23(1), 419-434. doi:10.1007/s10639-017-

9611-4

Vaidyanathan, S. (2013, December). Opinion: We need coding in schools, but where are the teachers?

Retrieved December, 01, 2017. https://www.edsurge.com/n/2013-12-09- opinion-we-need-

coding-in-schools-but-where-are-the-teachers

Ünal and Topu

512

Valsamakis, Y., Savidis, A., Agapakis, E., & Katsarakis, A. (2020, August). Collaborative Visual

Programming Workspace for Blockly. In 2020 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC) (pp. 1-6). IEEE.

doi:10.1109/VL/HCC50065.2020.9127253

Weintrop, D., Shepherd, D. C., Francis, P., & Franklin, D. (2017, October). Blockly goes to work:

Block-based programming for industrial robots. In 2017 IEEE Blocks and Beyond Workshop

(B&B) (pp. 29-36). IEEE. doi:10.1109/BLOCKS.2017.8120406

Weintrop, D., & Wilensky, U. (2017). Comparing block-based and text-based programming in high

school computer science classrooms. ACM Transactions on Computing Education

(TOCE), 18(1), 29-36. doi:10.1145/3089799

Weintrop, D., & Wilensky, U. (2018). How block-based, text-based, and hybrid block/text modalities

shape novice programming practices. International Journal of Child-Computer Interaction,

17, 83-92. doi:10.1016/j.ijcci.2018.04.005

Weintrop, D., & Wilensky, U. (2019). Transitioning from introductory block-based and text-based

environments to professional programming languages in high school computer science

classrooms. Computers & Education, 142(103646), 1-17. doi:10.1016/j.compedu.2019.103646

Winterer, M., Salomon, C., Köberle, J., Ramler, R., & Schittengruber, M. (2020, September). An

Expert Review on the Applicability of Blockly for Industrial Robot Programming. In 2020

25th IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA) (Vol. 1, pp. 1231-1234). IEEE. doi:10.1109/ETFA46521.2020.9212036

Yiğit, M.F. (2016). Investigating the effect of instruction through visual programming environment on

students' learning computer programming and attitudes toward programming (Master's

Thesis). Retrieved April, 15, 2019 from Council of Higher Education database in Turkey.

(Thesis No. 442990). https://tez.yok.gov.tr/UlusalTezMerkezi/tezSorguSonucYeni.jsp

Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Thousand Oaks, CA: Sage.

Yukselturk, E., & Altiok, S. (2017). An investigation of the effects of programming with Scratch on

the preservice IT teachers’ self‐efficacy perceptions and attitudes towards computer

programming. British Journal of Educational Technology, 48(3), 789-801.

doi:10.1111/bjet.12453

