Ideal-based quasi zero divisor graph

Ece Yetkin Çelikel* ${ }^{* 1}$ (D), Angsuman Das 2 (©), Cihat Abdioğlu ${ }^{3}$ (D)
${ }^{1}$ Department of Electrical-Electronics Engineering, Faculty of Engineering, Hasan Kalyoncu University, Gaziantep, Turkey
${ }^{2}$ Department of Mathematics, Presidency University, Kolkata, India
${ }^{3}$ Department of Mathematics and Science Education, Faculty of Education, Karamanoğlu Mehmetbey University, Karaman, Turkey

Abstract

Let R be a commutative ring with identity and I a proper ideal of R. In this paper we introduce the ideal-based quasi zero divisor graph $Q \Gamma_{I}(R)$ of R with respect to I which is an undirected graph with vertex set $V=\{a \in R \backslash \sqrt{I}: a b \in I$ for some $b \in R \backslash \sqrt{I}\}$ and two distinct vertices a and b are adjacent if and only if $a b \in I$. We study the basic properties of this graph such as diameter, girth, dominaton number, etc. We also investigate the interplay between the ring theoretic properties of a Noetherian multiplication ring R and the graph-theoretic properties of $Q \Gamma_{I}(R)$.

Mathematics Subject Classification (2020). 05C25, 05C12, 13A15
Keywords. ideal-based zero divisor graph, quasi primary ideal, zero divisor graph

1. Introduction

The concept of zero divisor graph and studies on graph-theoretic properties of commutative rings were first initiated by Beck in [4]. However, in that paper he was mainly interested in colorings. Then, Anderson and Livingston [2] introduced and studied the zero-divisor graph of a commutative ring R, denoted by $\Gamma(R)$, whose vertices are the nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if and only if $x y=0$. Later on, the study on graphs associated with rings has attracted many researchs (see for instance [1], [3], [10] and [11]).

Now, let us recall some standard terminology and notations which will be used in this paper. Throughout, R will be a commutative ring with identity and as usual, the rings of integers and integers modulo n will be denoted by \mathbb{Z} and \mathbb{Z}_{n}, respectively.

Let I be a proper ideal of R. The radical of I, denoted by \sqrt{I}, is defined by $\{a \in R$: $a^{n} \in I$ for some positive integer $\left.n\right\}$. In particular, the set of all nilpotent elements of R is denoted by $\sqrt{0}$. The ideal I of R is called primary if whenever $a, b \in R$ with $a b \in I$ and $a \notin I$ implies $b \in \sqrt{I}$, and called prime if $a b \in I$ and $a \notin I$ implies $b \in I$. In [6], Fuchs introduced and studied the concept of quasi-primary ideal. According to that paper, a proper ideal I is called quasi-primary if whenever $a, b \in R$ with $a b \in I$ and $a \notin \sqrt{I}$ implies

[^0]$b \in \sqrt{I}$, or equivalently if \sqrt{I} is prime. Clearly, every prime ideal is primary and every primary ideal is quasi-primary. It is also well-known that if I is a primary ideal, then \sqrt{I} is a prime ideal. However, the converse of this relation does not hold in general. For instance, let R be a ring of all polynomials that coefficient of x is divisible by 3 with degree at most n for some positive integer n. Consider the ideal $I=\left(9 x^{2}, 3 x^{3}, x^{4}, x^{5}, x^{6}\right)$ of R. Then, $\sqrt{I}=\left(3 x, x^{2}, x^{3}\right)$ is prime ideal, but I is not primary since $9 x^{2} \in I$ but neither $x^{2} \in I$ nor $9 \in \sqrt{I}$. For undefined notions about ring theory, we refer the reader to [9].

Let $G=(V, E)$ be a graph, where $V=V(G)$ and $E=E(G)$ is the set of vertices and the set of edges, respectively. Then, G is called connected if there is a path between any two distinct vertices and is called complete if all vertices are adjacent. The complete graph on n vertices is denoted by K_{n}. The clique number, $\omega(G)$, is the greatest integer $n \geq 1$ such that $K_{n} \subseteq G$, and $\omega(G)=\infty$ if $K_{n} \subseteq G$ for all $n \geq 1$. The distance between two distinct vertices a and b, denoted by $d(a, b)$, is the length of a shortest path connecting a and b. If such a path does not exists, then we write $d(a, b)=\infty$. It is clear that $d(a, a)=0$. The diameter of G will be denoted by $\operatorname{diam}(G)$ and defined as $\operatorname{diam}(G)=\sup \{d(a, b): a$ and b are vertices of $G\}$. The $g i r t h$ of G, denoted by $\operatorname{gr}(G)$, is defined as the length of the shortest cycle in G and $\operatorname{gr}(G)=\infty$ if G has no cycle. A nonempty subset D of the vertex set $V(G)$ is called a dominating set if every vertex $V(G \backslash D)$ is adjacent to at least one vertex of D. The domination number $\gamma(G)$ is the minimum cardinality among the dominating sets of G. The chromatic number of G is defined as the minimal number of colors needed to color G and denoted by $\chi(G)$. We refer the reader to [5] for general background and undefined notions on graph theory.

In [12], Redmond defined the ideal-based zero divisor graph, $\Gamma_{I}(R)$, for a proper ideal I of R with vertices $\{x \in R \backslash I: x y \in I$ for some $y \in R \backslash I\}$, where two distinct vertices x and y are adjacent if and only if $x y \in I$. Quasi-primary ideals and ideal-based zero divisor graphs motivated us to define a new graph containing elements of $R \backslash \sqrt{I}$ as vertices.

The aim of this paper is to introduce and study some of the basic properties of the ideal-based quasi zero divisor graph $Q \Gamma_{I}(R)$ of a ring R which is an undirected graph with vertices $\{a \in R \backslash \sqrt{I}: a b \in I$ for some $b \in R \backslash \sqrt{I}\}$ where I is a proper ideal of R and two distinct vertices a and b are adjacent if and only if $a b \in I$. Throughout the study we write $a \backsim b$ whenever the vertices a and b are adjacent.

In Section 2, we start with some trivial relations and some examples showing that under which conditions $Q \Gamma_{I}(R)$ and $\Gamma_{I}(R)$ coincides. We also investigate the graph properties of $Q \Gamma_{I}(R)$ such as diameter, girth, chromatic number, etc. In Theorem 2.9 the relationship between $Q \Gamma_{I}(R)$ and $Q \Gamma_{I}(R / I)$ is investigated. Among many other results in this section it is shown that $Q \Gamma_{I}(R)$ has no cut-vertex (Theroem 2.18).

In Section 3, we study ideal-based quasi zero divisor graphs of Noetherian multiplication rings. Especially, we investigate clique and chromatic numbers besides the diameter and the girth of the graph $Q \Gamma_{I}(R)$ for a Noetherian multiplication ring. In particular, the idealbased quasi zero divisor graph of \mathbb{Z}_{m} is entirely characterized. Moreover, we conclude the characterization for $Q \Gamma_{I}(R)$ (Theorem 3.2).

2. Basic properties of ideal-based quasi zero divisor graph

We start this section with an example to demonstrate the structure of $Q \Gamma_{I}(R)$ and the relationship between $Q \Gamma_{I}(R), \Gamma_{I}(R)$ and $\Gamma(R)$.

Example 2.1. (1) Let $R=\mathbb{Z}_{6}$ and $I=0$. Then, $Q \Gamma_{I}(R), \Gamma_{I}(R)$ and $\Gamma(R)$ coincide.
(2) Let $R=\mathbb{Z}_{12}$ and $I=0$. Then, $Q \Gamma_{I}(R)$ and $\Gamma_{I}(R)$ are different graphs as shown below. Moreover, this example denies the probable idea that the graph $Q \Gamma_{I}(R)$ arise by taking radical of an ideal in ideal-based zero divisor graph.

Figure 1. $Q \Gamma_{0}\left(\mathbb{Z}_{6}\right), \Gamma_{0}\left(\mathbb{Z}_{6}\right), \Gamma\left(\mathbb{Z}_{6}\right)$

Figure 2. $Q \Gamma_{(0)}\left(\mathbb{Z}_{12}\right)$ (left) and $\Gamma_{(0)}\left(\mathbb{Z}_{12}\right)$ (centre) and $\Gamma_{\sqrt{0}}\left(\mathbb{Z}_{12}\right)$ (right)

To see the general case for \mathbb{Z}_{n} please see the Corollaries 3.7 and 3.8.
Proposition 2.2. Let R be a ring and I a proper ideal of R.
(1) If R / I is a reduced ring (or equivalently, if $\sqrt{I}=I$), then the ideal-based quasi zero divisor graph and the ideal-based zero divisor graph coincide.
(2) I is a quasi primary ideal of R if and only if $Q \Gamma_{I}(R)=\emptyset$.

Proof. Clear by definitions.
Proposition 2.3. Let R be a ring and I a proper ideal of R.
(1) $Q \Gamma_{I}(R)$ is an induced subgraph of $\Gamma_{I}(R)$.
(2) $Q \Gamma_{I}(R)$ is a subgraph of $\Gamma_{\sqrt{I}}(R)$.

Proof. (1) Let $a \backsim b$ in $Q \Gamma_{I}(R)$. Then $a b \in I$ for $b \in R \backslash \sqrt{I}$ and so $a b \in I$ for $b \in R \backslash I$. Hence, $a \backsim b$ in $\Gamma_{I}(R)$.
(2) This part is clear as $a b \in I$ implies $a b \in \sqrt{I}$.

The following example shows that $Q \Gamma_{I}(R)$ need not to be an induced subgraph of $\Gamma_{\sqrt{I}}(R)$.

Example 2.4. Let $R=\mathbb{Z}_{60}$ and $I=0$. Then, it is easy to see that the vertices 10 and 15 are adjacent in $\Gamma_{\sqrt{I}}(R)$ but not adjacent in $Q \Gamma_{I}(R)$. So, $Q \Gamma_{I}(R)$ is not an induced subgraph of $\Gamma_{\sqrt{I}}(R)$.

In Example 2.4, observe that $\sqrt{I} \neq I$ and $Q \Gamma_{I}(R)$ is not an induced subgraph. But, $\sqrt{I} \neq I$ does not mean that $Q \Gamma_{I}(R)$ is not an induced subgraph (see the graphs left and right in Figure 2).

Lemma 2.5. Let R be a ring and I a nonzero proper ideal of R. Then $Q \Gamma_{I}(R)$ cannot be complete, i.e., $\operatorname{diam}\left(Q \Gamma_{I}(R)\right)>1$.
Proof. Assume that $\operatorname{diam}\left(Q \Gamma_{I}(R)\right)=1$. Suppose that x is a vertex of $Q \Gamma_{I}(R)$. It is clear that $x+i \neq x$ is also a vertex of $Q \Gamma_{I}(R)$, where $0 \neq i \in I$. Hence $x(x+i) \in I$ implies $x^{2} \in I$, a contradiction. Thus, $\operatorname{diam}\left(Q \Gamma_{I}(R)\right)>1$.

Note that in Lemma 2.5, the condition $I \neq 0$ is not superficial. For instance, put $p=2$ in Example 2.17. Then, $Q \Gamma_{0}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$ is complete with the only adjacent vertices $(1,0)$ and $(0,1)$.

Theorem 2.6. Let I be a proper ideal of R. Then $Q \Gamma_{I}(R)$ is a connected graph with $\operatorname{diam}\left(Q \Gamma_{I}(R)\right) \leq 3$.

Proof. Let a and b are distinct vertices of $Q \Gamma_{I}(R)$. If $a b \in I$, then $a \sim b$, so $d(a, b)=1$. Suppose that $a b \notin I$. Then there exist $c, d \in R \backslash \sqrt{I}$ such that $a c \in I$ and $b d \in I$. If $c=d$, then $a \sim c \backsim b$, so $d(a, b)=2$. Assume that $c \neq d$. Then we have the following cases:
Case I. If $c d \notin \sqrt{I}$, then $a \backsim c d \backsim b$, so $d(a, b)=2$.
Case II. If $c d \in \sqrt{I}-I$, then there exists an integer $n \geq 2$ such that $(c d)^{n} \in I$. Hence $a \backsim c^{n} \backsim d^{n} \backsim b$, so $d(a, b)=3$.
Case III. If $c d \in I$, then $a \backsim c \backsim d \backsim b$, so $d(a, b)=3$.
Thus $Q \Gamma_{I}(R)$ is connected and $\operatorname{diam}\left(Q \Gamma_{I}(R)\right) \leq 3$.
Theorem 2.7. Let I be a proper ideal of R. If $Q \Gamma_{I}(R)$ contains a cycle, then $g r\left(Q \Gamma_{I}(R)\right) \leq$ 4.

Proof. Assume that $Q \Gamma_{I}(R)$ contains a cycle $a_{0} \sim a_{1} \backsim \cdots \backsim a_{n} \backsim a_{0}$ such that $a_{i} a_{j} \notin I$ in case $j \neq i+1$ for all $i, j \in\{0,1, \ldots, n\}$. Here we have two cases: $a_{1} a_{n-1} \notin \sqrt{I}$ or $a_{1} a_{n-1} \in \sqrt{I}$.
Case I: Assume that $a_{1} a_{n-1} \notin \sqrt{I}$. Then, we have $a_{0} \backsim a_{1} a_{n-1} \backsim a_{n}$. Here, if $a_{1} a_{n-1}=a_{0}$ then $a_{0}^{2} \in I$, i.e. $a_{0} \in \sqrt{I}$, a contradiction. Similarly, one can see that $a_{1} a_{n-1} \neq a_{n}$. Hence, $a_{0} \backsim a_{1} a_{n-1} \backsim a_{n} \backsim a_{0}$ is a $3-$ cycle.
Case II: Assume that $a_{1} a_{n-1} \in \sqrt{I}$. Then there exists the least positive integer $k \geq 2$ such that $\left(a_{1} a_{n-1}\right)^{k} \in I$. Hence $a_{0} \backsim a_{1}^{k} \backsim a_{n-1}^{k} \backsim a_{n} \backsim a_{0}$ is a $4-$ cycle.

Thus $\operatorname{gr}\left(Q \Gamma_{I}(R)\right) \leq 4$.
Theorem 2.8. Let R be a ring and I a proper ideal of R which is not quasi primary. Then $\operatorname{gr}\left(Q \Gamma_{[[x]}(R[x])\right) \leq 4$.
Proof. Since I is not quasi primary, there exist $a, b \in R \backslash \sqrt{I}$ such that $a b \in I$. Hence, $a \backsim b \backsim a x \backsim b x \backsim a$ is a 4 -cycle. Thus, $g r\left(Q \Gamma_{I[x]}(R[x])\right) \leq 4$.

In the next theorem, we give a relationship between $Q \Gamma_{I}(R)$ and $Q \Gamma_{0}(R / I)$.
Theorem 2.9. Let I be a proper ideal of R and $a, b \in R \backslash \sqrt{I}$.
(1) a is adjacent to b in $Q \Gamma_{I}(R)$ if and only if $a+I$ is adjacent to $b+I$ in $Q \Gamma_{0}(R / I)$.
(2) $\operatorname{diam}\left(Q \Gamma_{I}(R)\right)=\operatorname{diam}\left(Q \Gamma_{0}(R / I)\right)$ and $\operatorname{gr}\left(Q \Gamma_{I}(R)\right)=\operatorname{gr}\left(Q \Gamma_{0}(R / I)\right)$.

Proof. (1) It is to be noted that $a \in V\left(Q \Gamma_{I}(R)\right)$ if and only if $a+I \in V\left(Q \Gamma_{0}(R / I)\right)$. Now $a \sim b$ in $Q \Gamma_{I}(R) \Leftrightarrow a b \in I \Leftrightarrow(a+I)(b+I)=I \Leftrightarrow a+I \sim b+I$ in $Q \Gamma_{0}(R / I)$.

At this point, we should be careful about the case when $a \sim b$ in $Q \Gamma_{I}(R)$ but $a+I=b+I$, because if this happens then the claim fails. However, we will show that this situation does not happen. For, if $a \sim b$ in $Q \Gamma_{I}(R)$ and $a+I=b+I$, then we have $a b, a-b \in I$. This implies $a^{2}-a b=a(a-b) \in I$ and hence $a^{2} \in I$, i.e., $a \in \sqrt{I}$, a contradiction.
(2) From part (1), it is clear that $d(a, b)=1$ in $Q \Gamma_{I}(R)$ if and only if $d(a+I, b+I)=1$ in $Q \Gamma_{0}(R / I)$. Now, $d(a, b)=2$ in $Q \Gamma_{I}(R)$ if and only if $a b \notin I$ and there exists $c \in$ $R \backslash \sqrt{I}$ such that $a c, b c \in I$ if and only if $d(a+I, b+I)=2$ in $Q \Gamma_{0}(R / I)$. Similarly, $d(a, b)=3$ in $Q \Gamma_{I}(R)$ if and only if $a b \notin I$ and there exists $c \in R \backslash$ \sqrt{I} such that $a c, b c \in I$ and there exist $c_{1}, c_{2} \in R \backslash \sqrt{I}$ such that $a c_{1}, c_{1} c_{2}, b c_{2} \in I$ if and only if $d(a+I, b+I)=3$ in $Q \Gamma_{0}(R / I)$.

From Theorem 2.6, as diameter of any ideal-based quasi zero divisor graph is less than or equal to 3, we have $\operatorname{diam}\left(Q \Gamma_{I}(R)\right)=\operatorname{diam}\left(Q \Gamma_{0}(R / I)\right)$ and $\operatorname{gr}\left(Q \Gamma_{I}(R)\right)=$ $g r\left(Q \Gamma_{0}(R / I)\right)$.

A graph H is called a retract of G if there are homomorphisms $\rho: G \rightarrow H$ and $\varphi: H \rightarrow G$ such that $\rho \circ \varphi=i d_{H}$. The homomorphism ρ is called a retraction (see [8, Definition 2.16]).

Proposition 2.10. [8, Observation 2.17] If H is a retract of G, then chromatic number and clique number of G and H are same.

Theorem 2.11. $Q \Gamma_{0}(R / I)$ is a retract of $Q \Gamma_{I}(R)$.
Proof. Define a map $\rho: V\left(Q \Gamma_{I}(R)\right) \rightarrow V\left(Q \Gamma_{0}(R / I)\right)$ by $\rho(x)=x+I$. Again, for each coset $x+I \in V\left(Q \Gamma_{0}(R / I)\right)$, choose and fix a representative $x^{*} \in x+I$ and define $\varphi: V\left(Q \Gamma_{0}(R / I)\right) \rightarrow V\left(Q \Gamma_{I}(R)\right)$ by $\varphi(x+I)=x^{*}$. It is clear from Theorem 2.9 part (1) that ρ is a surjective graph homomorphism and φ is a graph homomorphism.
Moreover, $\rho \circ \varphi: V\left(Q \Gamma_{0}(R / I)\right) \rightarrow V\left(Q \Gamma_{I}(R)\right)$ is given by $\rho \circ \varphi(x+I)=\rho\left(x^{*}\right)=$ $x^{*}+I=x+I$, i.e., $\rho \circ \varphi$ is the identity map on $Q \Gamma_{0}(R / I)$. Thus $Q \Gamma_{0}(R / I)$ is a retract of $Q \Gamma_{I}(R)$.

Corollary 2.12. $Q \Gamma_{0}(R / I)$ and $Q \Gamma_{I}(R)$ have same chromatic number and clique number.
Proof. It follows from Proposition 2.10 and Theorem 2.11.
Theorem 2.13. Let I be a proper ideal of R and $a, b \in R \backslash \sqrt{I}$. Then the following statements hold:
(1) If $a+I$ is adjacent to $b+I$ in $\Gamma(R / I)$, then a is adjacent to b in $Q \Gamma_{I}(R)$.
(2) If a is adjacent to b in $Q \Gamma_{I}(R)$, then $a+\sqrt{I}$ and $b+\sqrt{I}$ are always distinct elements, and also they are adjacent in $\Gamma(R / \sqrt{I})$. Furthermore, $Q \Gamma_{I}(R)$ is isomorphic to a subgraph of $\Gamma(R / \sqrt{I})$.
Proof. (1) Suppose that $a+I \backsim b+I$ in $\Gamma(R / I)$. Hence $(a+I)(b+I)=0+I$, so $a b \in I$. Since our assumption is $a, b \in R \backslash \sqrt{I}$, we have $a \backsim b$ in $Q \Gamma_{I}(R)$.
(2) Suppose that $a \backsim b$ in $Q \Gamma_{I}(R)$ and assume on the contrary that $a+\sqrt{I}=b+\sqrt{I}$. Then $a b \in I$ and $a-b \in \sqrt{I}$. Hence $a(a-b) \in \sqrt{I}$, it follows $a^{2} \in \sqrt{I}$. Thus $a \in \sqrt{I}$, a contradiction. Consequently, $a+\sqrt{I} \neq b+\sqrt{I}$. Now, since $a b \in I$ and $a, b \in R \backslash \sqrt{I}$, $(a+\sqrt{I})(b+\sqrt{I})=0+\sqrt{I}$. It means $a+\sqrt{I} \backsim b+\sqrt{I}$ in $\Gamma(R / \sqrt{I})$.

Suppose that the vertices of $\Gamma(R / \sqrt{I})$ is $\left\{a_{i}+\sqrt{I}: a_{i} \notin \sqrt{I}\right\}$. Now, we show that $Q \Gamma_{I}(R)$ is isomorphic to a subgraph of $\Gamma(R / \sqrt{I})$. We define a graph G with vertices $\left\{a_{i}: a_{i}+\sqrt{I}\right.$ is a vertex of $\Gamma(R / \sqrt{I})\}$ where $a_{i} \backsim a_{j}$ if whenever $a_{i} a_{j} \in I$. Then G is a subgraph of $\Gamma(R / \sqrt{I})$.

The next remark gives a method to construct $Q \Gamma_{I}(R)$ from $\Gamma(R / \sqrt{I})$.
Remark 2.14. Let I be an ideal of a ring R. We construct the graph $Q \Gamma_{I}(R)$ as the following method: Let $\left\{a_{\lambda}\right\}_{\lambda \in \Lambda}$ be a set of coset representatives of the vertices of $\Gamma(R / \sqrt{I})$. We define a graph G with vertices $\left\{a_{i}: a_{i}+\sqrt{I}\right.$ is a vertex of $\left.\Gamma(R / \sqrt{I})\right\}$. If $a_{i} a_{j} \notin I$, then omit these vertices. Hence $a_{i} \backsim a_{j}$ whenever $a_{i} a_{j} \in I$. Then G is a subgraph of $\Gamma(R / \sqrt{I})$.

Note that $\omega\left(Q \Gamma_{I}(R)\right) \leq \omega(\Gamma(R / \sqrt{I}))$ since $Q \Gamma_{I}(R)$ is isomorphic to a subgraph of $\Gamma(R / \sqrt{I})$.
Theorem 2.15. Let I be a proper ideal of a ring R. If there exists a vertex of $Q \Gamma_{I}(R)$ which is adjacent to every other vertex of $Q \Gamma_{I}(R)$, then $I=0$.
Proof. Suppose that $a \in Q \Gamma_{I}(R)$ is adjacent to every other vertex of $Q \Gamma_{I}(R)$ and $I \neq 0$. Then there exists $0 \neq b \in I$. Observe that $a \neq a+b \in R \backslash \sqrt{I}$ and $a+b$ is also a vertex which is adjacent to every other vertex of $Q \Gamma_{I}(R)$. Hence $a(a+b) \in I$; and so we have $a^{2} \in I$, a conradiction. Thus $I=0$.

The following example shows that the converse of Theorem 2.15 is not true in general.
Example 2.16. Let $R=\mathbb{Z}_{60}$ and $I=0$. Then there is no vertex in $Q \Gamma_{0}\left(\mathbb{Z}_{60}\right)$ which is adjacent to every other vertex in this graph. Indeed, $4,5 \in Q \Gamma_{0}\left(\mathbb{Z}_{60}\right)$ and $d(4,5)=3$. (one of the path is $4 \backsim 15 \backsim 12 \backsim 5$)

Example 2.17. Let $R=\mathbb{Z}_{2} \times \mathbb{Z}_{p}$ and $I=(0,0)$, where $n \geq 2$. Then, it is clear that the vertex $(1,0)$ is adjacent to $(0,1),(0,2), \ldots,(0, p-1)$.

Recall that a vertex a of a connected graph G is said to be a cut-vertex of G if there exist vertices x and y of G such that a is in every path from x to y where x, y and a are distinct.

Theorem 2.18. Let I be a nonzero proper ideal of R. Then $Q \Gamma_{I}(R)$ has no cut-vertex.
Proof. Suppose that a is a cut-vertex of $Q \Gamma_{I}(R)$. Then there exist vertices $x, y \in R \backslash \sqrt{I}$ such that a lies on every path from x to y. Since $\operatorname{diam}\left(Q \Gamma_{I}(R)\right) \leq 3$, the shortest path from x to y is of the length 2 or 3 .
Case I: Suppose that $x \sim a \sim y$ is a path of the shortest lenght from x to y. Hence $x+\sqrt{I} \neq a+\sqrt{I}$ and $y+\sqrt{I} \neq a+\sqrt{I}$ by Theorem 2.13. Let $0 \neq i \in I$. Since $x(a+i) \in I$ and $y(a+i) \in I$, we conclude that $x \backsim(a+i) \backsim y$ is a path in $Q \Gamma_{I}(R)$, a contradiction.
Case II: Suppose that $x \backsim a \backsim b \backsim y$ is a path of the shortest lenght from x to y. Hence $a+\sqrt{I} \neq b+\sqrt{I}$ by Theorem 2.13. Let $0 \neq i \in I$. Since $x(a+i) \in I$ and $b(a+i) \in I$, we conclude that $x \backsim(a+i) \backsim b \backsim y$ is a path in $Q \Gamma_{I}(R)$, a contradiction.

Thus $Q \Gamma_{I}(R)$ has no cut-vertex.

3. Ideal-based quasi zero divisor graph of a Noetherian multiplication ring

Recall that a ring R is called a multiplication ring if whenever I, J are ideals of R with $I \subseteq J$, then there exists an ideal K of R such that $I=J K$. The aim of this section is to characterize ideal-based quasi zero divisor graphs of Noetherian multiplication rings. For this purpose, we need the following lemma.
Lemma 3.1. Let R be a ring with identity. Then, the following are equivalent:
(1) R is a Noetherian multiplication ring.
(2) Each primary ideal of R is a prime power, i.e., if Q is a primary ideal of R, then $Q=P^{n}$ for some P prime ideal of R and $n \geq 0$.
Proof. The result is clear from [7, 39.4 Proposition] and [7, Exercise 9 in S. 39].
Throughout, R will be a Noetherian multiplication ring. Note that Dedekind Domains are particular examples of Noetherian multiplication ring. Thus all results in this section is also valid for Dedekind Domains.

Theorem 3.2. Let I be a proper ideal of R. Then, one of the following statements holds:
(1) $Q \Gamma_{I}(R)=\emptyset$.
(2) $Q \Gamma_{I}(R)$ is a complete bipartite graph.
(3) $Q \Gamma_{I}(R)$ is a k-partite graph for $k \geq 3$.

Proof. Suppose that $Q \Gamma_{I}(R) \neq \emptyset$. Since R is Noetherian, I has a primary decomposition. Then, $I=Q_{1} \cap \cdots \cap Q_{k}$ where $Q_{i}(i=1, \ldots, k)$ are primary ideals of R. From Lemma 3.1, $Q_{i}=P_{i}^{\alpha_{i}}$ for some prime ideal P_{i} of R and $\alpha_{i} \geq 1$. Hence $I=P_{1}^{\alpha_{1}} \cap \cdots \cap P_{k}^{\alpha_{k}}$.

Case I. If $k=1$, then $Q \Gamma_{I}(R)=\emptyset$ by Proposition 2.2 (2).
Case II. Let $k=2$. Then, $I=P_{1}^{\alpha_{1}} \cap P_{2}^{\alpha_{2}}$ where P_{1}, P_{2} are distinct primes. Hence the vertex set of the graph $V=\left(P_{1}^{\alpha_{1}} \cup P_{2}^{\alpha_{2}}\right) \backslash\left(P_{1} \cap P_{2}\right)$. Put $V_{1}=P_{2}^{\alpha_{2}} \backslash P_{1}$ and $V_{2}=P_{1}^{\alpha_{1}} \backslash P_{2}$. Note that in this case $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V$. Moreover, V_{1}, V_{2} are independent
sets and any vertex in V_{1} is adjacent to any arbitrary vertex in V_{2}. Thus, $Q \Gamma_{I}(R)$ is a complete bipartite graph.

Case III. Suppose that $k \geq 3$. We construct the vertex set V of $Q \Gamma_{I}(R)$ and partitions as follows:

$$
V=\left(\bigcup_{i=1}^{k} P_{i}^{\alpha_{i}}\right) \backslash\left(\bigcap_{i=1}^{k} P_{i}\right)
$$

and define $V_{i}=V \backslash P_{i}$ for $i=1,2, \ldots, k$. We claim that $V=\bigcup_{i=1}^{k} V_{i}$. Suppose there exists $x \in V \backslash \bigcup_{i=1}^{k} V_{i}$, then $x \in \bigcap_{i=1}^{k} V_{i}^{c}=\bigcap_{i=1}^{k} P_{i}$, a contradiction as $x \in V$. Thus $V=\bigcup_{i=1}^{k} V_{i}$. Clearly V_{i} 's are independent sets. But V_{i} 's are not pairwise disjoint. However, consider the sets recursively

$$
W_{1}=V_{1} ; W_{2}=V_{2} \backslash V_{1} ; W_{3}=V_{3} \backslash\left(V_{1} \cup V_{2}\right), \ldots, W_{k}=V_{k} \backslash\left(\bigcup_{i=1}^{k-1} V_{i}\right)
$$

It can be checked that W_{i} 's are disjoint independent sets with $\bigcup_{i=1}^{k} W_{i}=V$. Thus $Q \Gamma_{I}(R)$ is k-partite.

Corollary 3.3. Let $I=P_{1}^{\alpha_{1}} \cap \cdots \cap P_{k}^{\alpha_{k}}$ where P_{i} 's are distinct prime ideals of R and $k>1$. Then the clique number ω of $Q \Gamma_{I}(R)$ is k.

Proof. From Theorem 3.2, we have that $Q \Gamma_{I}(R)$ is k-partite. We claim that $\omega \leq k$. If not, let $\omega \geq k+1$. Then, by pigeon-hole principle, there exist at least two vertices a and b from the same partite set in any clique. However, as partite sets are independent, we arrive at a contradiction. Thus $\omega \leq k$. Now, for each $i=1,2, \ldots, k$, choose an element $x_{i} \in \bigcap_{\substack{t=1 \\ t \neq i}}^{k} P_{t}^{\alpha_{t}}$. Clearly x_{i} 's belong to $V\left(Q \Gamma_{I}(R)\right)$. Moreover, x_{i} is adjacent to x_{j} in $Q \Gamma_{I}(R)$ for $i \neq j$. Thus we get a clique of size k. Hence the corollary follows.

Corollary 3.4. Let $I=P_{1}^{\alpha_{1}} \cap \cdots \cap P_{k}^{\alpha_{k}}$ where P_{i} 's are distinct prime ideals of R and $k>1$. Then, $\chi\left(Q \Gamma_{I}(R)\right)=k$.

Proof. Since $Q \Gamma_{I}(R)$ is k-partite, we have $\chi \leq k$. Again, as $\omega=k$, we have $\chi \geq k$. Thus the corollary follows.

Theorem 3.5. Let $I=P_{1}^{\alpha_{1}} \cap \cdots \cap P_{k}^{\alpha_{k}}$ where P_{i} 's are distinct prime ideals of R and $k>1$. Then, diameter and girth of $Q \Gamma_{I}(R)$ is given by

$$
\operatorname{diam}\left(Q \Gamma_{I}(R)\right)=\left\{\begin{array}{ll}
2, & \text { if } k=2 \\
3, & \text { if } k>2
\end{array} \quad \text { and } \quad \operatorname{gr}\left(Q \Gamma_{I}(R)\right)=\left\{\begin{array}{ll}
4, & \text { if } k=2 \\
3, & \text { if } k>2
\end{array} .\right.\right.
$$

Proof. If $I=P_{1}{ }^{\alpha_{1}} \cap P_{2}{ }^{\alpha_{2}}$, then by Theorem 3.2, $Q \Gamma_{I}(R)$ has diameter 2 and girth 4.
If there are more than two distinct prime ideals containing I, then let P_{1}, P_{2}, P_{3} be three distinct prime ideals of R. Consider the vertices $u \in P_{1}{ }^{\alpha_{1}}$ and $v \in P_{2}{ }^{\alpha_{2}}$. Clearly they are not adjacent. If possible, let a be a common neighbour of u and v. Then, $a u, a v \in I$ and hence $a \in \bigcap_{j=2}^{k} P_{j}^{\alpha_{j}}$ and $a \in \bigcap_{\substack{j=1 \\ j \neq 2}}^{k} P_{j}^{\alpha_{j}}$, i.e., $a \in \bigcap_{j=1}^{k} P_{j}$. However, this contradicts that $a \in$ $V\left(Q \Gamma_{I}(R)\right)$. Hence $d(u, v)>2$. Now, by Theorem 2.6, we know that $\operatorname{diam}\left(Q \Gamma_{I}(R)\right) \leq 3$. Thus $\operatorname{diam}\left(Q \Gamma_{I}(R)\right)=3$.

Again, consider $a \in \bigcap_{j=2}^{k} P_{j}^{\alpha_{j}}, b \in \bigcap_{\substack{j=1 \\ j \neq 2}}^{k} P_{j}^{\alpha_{j}}, c \in \bigcap_{\substack{j=1 \\ j \neq 3}}^{k} P_{j}^{\alpha_{j}}$. Clearly $a, b, c \in V\left(Q \Gamma_{I}(R)\right)$ and they form a triangle. Hence $\operatorname{gr}\left(Q \Gamma_{I}(R)\right)=3$ and the theorem follows.

Let $R=\mathbb{Z}$. Then, any ideal of R is of the form $m \mathbb{Z}$. We conclude the following characterizations for ideal-based quasi zero divisor graph of \mathbb{Z} by the next Theorem and Corollaries:

Theorem 3.6. Let $m=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$ where p_{i} 's are distinct primes and $k>1$. Then domination number γ of $Q \Gamma_{m \mathbb{Z}}(\mathbb{Z})$ is k.

Proof. For $i=1,2, \ldots, k$, consider the vertices $x_{i}=m / p_{i}{ }^{\alpha_{i}}$. We claim that
$S=\left\{x_{i}: i=1,2, \ldots, k\right\}$ is a dominating set for $Q \Gamma_{m \mathbb{Z}}(\mathbb{Z})$. Let x be an arbitrary vertex in $Q \Gamma_{m \mathbb{Z}}(\mathbb{Z})$. Then $p_{1} p_{2} \cdots p_{k}$ does not divide x and there exists $j \in\{1,2, \ldots, k\}$ such that $p_{j}{ }^{\alpha_{j}}$ divide x. Observe that $x x_{j} \in m \mathbb{Z}$, i.e., x is adjacent to x_{j}. Thus S is a dominating set and hence $\gamma \leq k$.

If possible, let $\gamma<k$. Then there exists a dominating set S^{\prime} with $k-1$ vertices. Let $S^{\prime}=\left\{y_{1}, y_{2}, \ldots, y_{k-1}\right\}$. Consider the set of vertices $D=\left\{p_{1}{ }^{\alpha_{1}}, p_{2}{ }^{\alpha_{2}}, \ldots, p_{k}{ }^{\alpha_{k}}\right\}$. If any $p_{i}{ }^{\alpha_{i}} \in S^{\prime}$, then we replace $p_{i}{ }^{\alpha_{i}}$ in D by $p p_{i}{ }^{\alpha_{i}}$ where p is a prime which does not divide m and $p p_{i}{ }^{\alpha_{i}} \notin S^{\prime}$. This can be guaranteed as choice of such a p is infinite. Thus $D \cap S^{\prime}=\emptyset$. Since S^{\prime} is a dominating set, each element of D is adjacent to some element of S^{\prime}. We claim that two distinct elements of $p_{i}{ }^{\alpha_{i}}$ and $p_{j}{ }^{\alpha_{j}}$ of D can not be dominated by same y_{t}. Because, if it happens then $p_{i}^{\alpha_{i}} y_{t}, p_{j}^{\alpha_{j}} y_{t} \in m \mathbb{Z}$, i.e., both $m / p_{i}^{\alpha_{i}}$ and $m / p_{j}{ }^{\alpha_{j}}$ divides y_{t}, i.e., their l.c.m. divides y_{t}, i.e., $m \mid y_{t}$, i.e., $y_{t} \in m \mathbb{Z}$, a contradiction. Therefore distinct $p_{i}{ }^{\alpha}$'s are dominated by distinct elements of S^{\prime} and hence S^{\prime} should contain at least k vertices, a contradiction. Thus $\gamma=k$ and the theorem holds.
Corollary 3.7. Let $I=m \mathbb{Z}$ be an ideal of \mathbb{Z}. Then,
(1) If $m=0$ or $m=p^{k}$ where p is prime and k is a positive integer, then $Q \Gamma_{m \mathbb{Z}}(\mathbb{Z})$ is a null graph.
(2) If $m=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}}$ where p_{1}, p_{2} are distinct primes, then $Q \Gamma_{m \mathbb{Z}}(\mathbb{Z})$ is a complete bipartite graph with diam $\left(Q \Gamma_{m \mathbb{Z}}(\mathbb{Z})\right)=2$ and $\operatorname{gr}\left(Q \Gamma_{m \mathbb{Z}}(\mathbb{Z})\right)=4$.
(3) If $m=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$ where p_{i} 's are distinct primes and $k>2$, then $Q \Gamma_{m \mathbb{Z}}(\mathbb{Z})$ is a k-partite graph with $\operatorname{diam}\left(Q \Gamma_{m \mathbb{Z}}(\mathbb{Z})\right)=\operatorname{gr}\left(Q \Gamma_{m \mathbb{Z}}(\mathbb{Z})\right)=3$, clique number $\omega=k$, chromatic number $\chi=k$ and the domination number $\gamma=k$.
As an application of Theorem 2.9, Theorem 3.5 and Theorem 3.6, we conclude the following result for \mathbb{Z}_{m} with respect to the the zero ideal.

Corollary 3.8. Let $m=p_{1}{ }^{\alpha_{1}} p_{2}{ }^{\alpha_{2}} \cdots p_{k}{ }^{\alpha_{k}}$ where p_{i} 's are distinct primes and $k>1$. Then,
(1) the diameter and girth of $Q \Gamma_{0}\left(\mathbb{Z}_{m}\right)$ are given by

$$
\operatorname{diam}\left(Q \Gamma_{0}\left(\mathbb{Z}_{m}\right)\right)=\left\{\begin{array}{ll}
2, & \text { if } k=2 \\
3, & \text { if } k>2
\end{array} \quad \text { and } \quad \operatorname{gr}\left(Q \Gamma_{0}\left(\mathbb{Z}_{m}\right)\right)=\left\{\begin{array}{ll}
4, & \text { if } k=2 \\
3, & \text { if } k>2
\end{array} .\right.\right.
$$

(2) the domination number, the chromatic number and the clique number of $Q \Gamma_{0}\left(\mathbb{Z}_{m}\right)$ are k.

Acknowledgment. The authors are grateful to the reviewer for several fruitful comments which improved the overall presentation of the paper. The second author acknowledge the funding of DST-SERB-SRG Sanction no. SRG/2019/000475, Govt. of India.

References

[1] S. Akbari, M. Habibi, A. Majidinya and R. Manaviyat, The inclusion ideal graph of rings, Commun. Algebra 43 (6), 2457-2465, 2015.
[2] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217, 434-447, 1999.
[3] S. Aykaç, N. Akgüne and A.S. Çevik, Analysis of Zagreb indices over zero-divisor graphs of commutative rings, Asian-Eur. J. Math. 12 (6), 1-19, 2019. (Article ID 2040003)
[4] I. Beck, Coloring of commutative rings, J. Algebra 116, 208-226, 1988.
[5] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, Springer-Verlag, New York, 1998.
[6] L. Fuchs, On quasi-primary ideals, Acta. Sci. Math. (Szeged) 11 (3), 174-183, 1947.
[7] R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Appl. Math., 1992.
[8] G. Hahn and C. Tardif, Graph Homomorphisms: Structure and Symmetry, in: Graph Symmetry, 107-166, Springer, Dordrecht, 1997.
[9] I. Kaplansky, Commutative Rings (rev. ed.), University of Chicago Press, Chicago, 1974.
[10] D.A. Mojdeh and A.M. Rahimi, Dominating sets of some graphs associated to commutative rings, Commun. Algebra 40 (9), 3389-3396, 2012.
[11] N.J. Rad, S.H. Jafari and D.A. Mojdeh, On domination in zero-divisor graphs, Canad. Math. Bull. 56 (2), 407-411, 2013.
[12] S.P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Commun. Algebra 31 (9), 4425-4443, 2003.

[^0]: *Corresponding Author.
 Email addresses: ece.celikel@hku.edu.tr; (E. Y. Çelikel), angsuman.maths@presiuniv.ac.in (A. Das), cabdioglu@kmu.edu.tr (C. Abdioğlu)
 Received: 06.11.2020; Accepted: 26.06.2021

