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Abstract
Let R be a commutative ring with identity and I a proper ideal of R. In this paper we
introduce the ideal-based quasi zero divisor graph QΓI(R) of R with respect to I which is
an undirected graph with vertex set V = {a ∈ R\

√
I : ab ∈ I for some b ∈ R\

√
I} and two

distinct vertices a and b are adjacent if and only if ab ∈ I. We study the basic properties
of this graph such as diameter, girth, dominaton number, etc. We also investigate the
interplay between the ring theoretic properties of a Noetherian multiplication ring R and
the graph-theoretic properties of QΓI(R).
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1. Introduction
The concept of zero divisor graph and studies on graph-theoretic properties of com-

mutative rings were first initiated by Beck in [4]. However, in that paper he was mainly
interested in colorings. Then, Anderson and Livingston [2] introduced and studied the
zero-divisor graph of a commutative ring R, denoted by Γ(R), whose vertices are the
nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if and only if
xy = 0. Later on, the study on graphs associated with rings has attracted many researchs
(see for instance [1], [3], [10] and [11]).

Now, let us recall some standard terminology and notations which will be used in this
paper. Throughout, R will be a commutative ring with identity and as usual, the rings of
integers and integers modulo n will be denoted by Z and Zn, respectively.

Let I be a proper ideal of R. The radical of I, denoted by
√

I, is defined by {a ∈ R :
an ∈ I for some positive integer n}. In particular, the set of all nilpotent elements of R is
denoted by

√
0. The ideal I of R is called primary if whenever a, b ∈ R with ab ∈ I and

a /∈ I implies b ∈
√

I, and called prime if ab ∈ I and a /∈ I implies b ∈ I. In [6], Fuchs
introduced and studied the concept of quasi-primary ideal. According to that paper, a
proper ideal I is called quasi-primary if whenever a, b ∈ R with ab ∈ I and a /∈

√
I implies

∗Corresponding Author.
Email addresses: ece.celikel@hku.edu.tr; (E. Y. Çelikel), angsuman.maths@presiuniv.ac.in (A. Das),

cabdioglu@kmu.edu.tr (C. Abdioğlu)
Received: 06.11.2020; Accepted: 26.06.2021

https://orcid.org/0000-0001-6194-656X
https://orcid.org/0000-0001-7647-4454
https://orcid.org/0000-0002-7874-2392


Ideal-based quasi zero divisor graph 1659

b ∈
√

I, or equivalently if
√

I is prime. Clearly, every prime ideal is primary and every
primary ideal is quasi-primary. It is also well-known that if I is a primary ideal, then√

I is a prime ideal. However, the converse of this relation does not hold in general. For
instance, let R be a ring of all polynomials that coefficient of x is divisible by 3 with degree
at most n for some positive integer n. Consider the ideal I = (9x2, 3x3, x4, x5, x6) of R.
Then,

√
I = (3x, x2, x3) is prime ideal, but I is not primary since 9x2 ∈ I but neither

x2 ∈ I nor 9 ∈
√

I. For undefined notions about ring theory, we refer the reader to [9].
Let G = (V, E) be a graph, where V = V (G) and E = E(G) is the set of vertices and the

set of edges, respectively. Then, G is called connected if there is a path between any two
distinct vertices and is called complete if all vertices are adjacent. The complete graph on
n vertices is denoted by Kn. The clique number, ω(G), is the greatest integer n ≥ 1 such
that Kn ⊆ G, and ω(G) = ∞ if Kn ⊆ G for all n ≥ 1. The distance between two distinct
vertices a and b, denoted by d(a, b), is the length of a shortest path connecting a and b.
If such a path does not exists, then we write d(a, b) = ∞. It is clear that d(a, a) = 0.
The diameter of G will be denoted by diam(G) and defined as diam(G) = sup{d(a, b) : a
and b are vertices of G}. The girth of G, denoted by gr(G), is defined as the length of
the shortest cycle in G and gr(G) = ∞ if G has no cycle. A nonempty subset D of the
vertex set V (G) is called a dominating set if every vertex V (G\D) is adjacent to at least
one vertex of D. The domination number γ(G) is the minimum cardinality among the
dominating sets of G. The chromatic number of G is defined as the minimal number of
colors needed to color G and denoted by χ(G). We refer the reader to [5] for general
background and undefined notions on graph theory.

In [12], Redmond defined the ideal-based zero divisor graph, ΓI(R), for a proper ideal
I of R with vertices {x ∈ R\I : xy ∈ I for some y ∈ R\I}, where two distinct vertices x
and y are adjacent if and only if xy ∈ I. Quasi-primary ideals and ideal-based zero divisor
graphs motivated us to define a new graph containing elements of R\

√
I as vertices.

The aim of this paper is to introduce and study some of the basic properties of the
ideal-based quasi zero divisor graph QΓI(R) of a ring R which is an undirected graph with
vertices {a ∈ R\

√
I : ab ∈ I for some b ∈ R\

√
I} where I is a proper ideal of R and two

distinct vertices a and b are adjacent if and only if ab ∈ I. Throughout the study we write
a v b whenever the vertices a and b are adjacent.

In Section 2, we start with some trivial relations and some examples showing that under
which conditions QΓI(R) and ΓI(R) coincides. We also investigate the graph properties of
QΓI(R) such as diameter, girth, chromatic number, etc. In Theorem 2.9 the relationship
between QΓI(R) and QΓI(R/I) is investigated. Among many other results in this section
it is shown that QΓI(R) has no cut-vertex (Theroem 2.18).

In Section 3, we study ideal-based quasi zero divisor graphs of Noetherian multiplication
rings. Especially, we investigate clique and chromatic numbers besides the diameter and
the girth of the graph QΓI(R) for a Noetherian multiplication ring. In particular, the ideal-
based quasi zero divisor graph of Zm is entirely characterized. Moreover, we conclude the
characterization for QΓI(R) (Theorem 3.2).

2. Basic properties of ideal-based quasi zero divisor graph
We start this section with an example to demonstrate the structure of QΓI(R) and the

relationship between QΓI(R), ΓI(R) and Γ(R).

Example 2.1. (1) Let R = Z6 and I = 0. Then, QΓI(R), ΓI(R) and Γ(R) coincide.
(2) Let R = Z12 and I = 0. Then, QΓI(R) and ΓI(R) are different graphs as shown

below. Moreover, this example denies the probable idea that the graph QΓI(R)
arise by taking radical of an ideal in ideal-based zero divisor graph.
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Figure 1. QΓ0(Z6), Γ0(Z6), Γ(Z6)
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Figure 2. QΓ(0)(Z12) (left) and Γ(0)(Z12) (centre) and Γ√
0(Z12) (right)
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To see the general case for Zn please see the Corollaries 3.7 and 3.8.

Proposition 2.2. Let R be a ring and I a proper ideal of R.

(1) If R/I is a reduced ring (or equivalently, if
√

I = I), then the ideal-based quasi
zero divisor graph and the ideal-based zero divisor graph coincide.

(2) I is a quasi primary ideal of R if and only if QΓI(R) = ∅.

Proof. Clear by definitions. �

Proposition 2.3. Let R be a ring and I a proper ideal of R.

(1) QΓI(R) is an induced subgraph of ΓI(R).
(2) QΓI(R) is a subgraph of Γ√

I(R).

Proof. (1) Let a v b in QΓI(R). Then ab ∈ I for b ∈ R\
√

I and so ab ∈ I for b ∈ R\I.
Hence, a v b in ΓI(R).

(2) This part is clear as ab ∈ I implies ab ∈
√

I.
�

The following example shows that QΓI(R) need not to be an induced subgraph of
Γ√

I(R).

Example 2.4. Let R = Z60 and I = 0. Then, it is easy to see that the vertices 10 and
15 are adjacent in Γ√

I(R) but not adjacent in QΓI(R). So, QΓI(R) is not an induced
subgraph of Γ√

I(R).

In Example 2.4, observe that
√

I ̸= I and QΓI(R) is not an induced subgraph. But,√
I ̸= I does not mean that QΓI(R) is not an induced subgraph (see the graphs left and

right in Figure 2).

Lemma 2.5. Let R be a ring and I a nonzero proper ideal of R. Then QΓI(R) cannot be
complete, i.e., diam(QΓI(R)) > 1.

Proof. Assume that diam(QΓI(R)) = 1. Suppose that x is a vertex of QΓI(R). It is
clear that x + i ̸= x is also a vertex of QΓI(R), where 0 ̸= i ∈ I. Hence x(x + i) ∈ I
implies x2 ∈ I, a contradiction. Thus, diam(QΓI(R)) > 1. �

Note that in Lemma 2.5, the condition I ̸= 0 is not superficial. For instance, put p = 2
in Example 2.17. Then, QΓ0(Z2 × Z2) is complete with the only adjacent vertices (1, 0)
and (0, 1).
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Theorem 2.6. Let I be a proper ideal of R. Then QΓI(R) is a connected graph with
diam(QΓI(R)) ≤ 3.

Proof. Let a and b are distinct vertices of QΓI(R). If ab ∈ I, then a v b, so d(a, b) = 1.

Suppose that ab /∈ I. Then there exist c, d ∈ R\
√

I such that ac ∈ I and bd ∈ I. If c = d,
then a v c v b, so d(a, b) = 2. Assume that c ̸= d. Then we have the following cases:
Case I. If cd /∈

√
I, then a v cd v b, so d(a, b) = 2.

Case II. If cd ∈
√

I − I, then there exists an integer n ≥ 2 such that (cd)n ∈ I. Hence
a v cn v dn v b, so d(a, b) = 3.
Case III. If cd ∈ I, then a v c v d v b, so d(a, b) = 3.

Thus QΓI(R) is connected and diam(QΓI(R)) ≤ 3. �
Theorem 2.7. Let I be a proper ideal of R. If QΓI(R) contains a cycle, then gr(QΓI(R)) ≤
4.

Proof. Assume that QΓI(R) contains a cycle a0 v a1 v · · · v an v a0 such that aiaj /∈ I

in case j ̸= i + 1 for all i, j ∈ {0, 1, ..., n}. Here we have two cases: a1an−1 /∈
√

I or
a1an−1 ∈

√
I.

Case I: Assume that a1an−1 /∈
√

I. Then, we have a0 v a1an−1 v an. Here, if a1an−1 = a0
then a2

0 ∈ I, i.e. a0 ∈
√

I, a contradiction. Similarly, one can see that a1an−1 ̸= an. Hence,
a0 v a1an−1 v an v a0 is a 3−cycle.
Case II: Assume that a1an−1 ∈

√
I. Then there exists the least positive integer k ≥ 2

such that (a1an−1)k ∈ I. Hence a0 v ak
1 v ak

n−1 v an v a0 is a 4−cycle. �

Thus gr(QΓI(R)) ≤ 4.

Theorem 2.8. Let R be a ring and I a proper ideal of R which is not quasi primary.
Then gr(QΓI[x](R[x])) ≤ 4.

Proof. Since I is not quasi primary, there exist a, b ∈ R\
√

I such that ab ∈ I. Hence,
a v b v ax v bx v a is a 4−cycle. Thus, gr(QΓI[x](R[x])) ≤ 4. �

In the next theorem, we give a relationship between QΓI(R) and QΓ0(R/I).

Theorem 2.9. Let I be a proper ideal of R and a, b ∈ R \
√

I.
(1) a is adjacent to b in QΓI(R) if and only if a + I is adjacent to b + I in QΓ0(R/I).
(2) diam(QΓI(R)) = diam(QΓ0(R/I)) and gr(QΓI(R)) = gr(QΓ0(R/I)).

Proof. (1) It is to be noted that a ∈ V (QΓI(R)) if and only if a + I ∈ V (QΓ0(R/I)).
Now a ∼ b in QΓI(R) ⇔ ab ∈ I ⇔ (a+I)(b+I) = I ⇔ a+I ∼ b+I in QΓ0(R/I).

At this point, we should be careful about the case when a ∼ b in QΓI(R) but
a + I = b + I, because if this happens then the claim fails. However, we will show
that this situation does not happen. For, if a ∼ b in QΓI(R) and a + I = b + I,
then we have ab, a − b ∈ I. This implies a2 − ab = a(a − b) ∈ I and hence a2 ∈ I,
i.e., a ∈

√
I, a contradiction.

(2) From part (1), it is clear that d(a, b) = 1 in QΓI(R) if and only if d(a+I, b+I) = 1
in QΓ0(R/I). Now, d(a, b) = 2 in QΓI(R) if and only if ab /∈ I and there exists c ∈
R \

√
I such that ac, bc ∈ I if and only if d(a + I, b + I) = 2 in QΓ0(R/I). Sim-

ilarly, d(a, b) = 3 in QΓI(R) if and only if ab /∈ I and there exists c ∈ R \√
I such that ac, bc ∈ I and there exist c1, c2 ∈ R \

√
I such that ac1, c1c2, bc2 ∈ I

if and only if d(a + I, b + I) = 3 in QΓ0(R/I).
From Theorem 2.6, as diameter of any ideal-based quasi zero divisor graph is less

than or equal to 3, we have diam(QΓI(R)) = diam(QΓ0(R/I)) and gr(QΓI(R)) =
gr(QΓ0(R/I)).

�
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A graph H is called a retract of G if there are homomorphisms ρ : G → H and
φ : H → G such that ρ ◦ φ = idH . The homomorphism ρ is called a retraction (see
[8, Definition 2.16]).

Proposition 2.10. [8, Observation 2.17] If H is a retract of G, then chromatic number
and clique number of G and H are same.

Theorem 2.11. QΓ0(R/I) is a retract of QΓI(R).

Proof. Define a map ρ : V (QΓI(R)) → V (QΓ0(R/I)) by ρ(x) = x + I. Again, for
each coset x + I ∈ V (QΓ0(R/I)), choose and fix a representative x∗ ∈ x + I and define
φ : V (QΓ0(R/I)) → V (QΓI(R)) by φ(x + I) = x∗. It is clear from Theorem 2.9 part (1)
that ρ is a surjective graph homomorphism and φ is a graph homomorphism.

Moreover, ρ ◦ φ : V (QΓ0(R/I)) → V (QΓI(R)) is given by ρ ◦ φ(x + I) = ρ(x∗) =
x∗ + I = x + I, i.e., ρ ◦ φ is the identity map on QΓ0(R/I). Thus QΓ0(R/I) is a retract
of QΓI(R). �
Corollary 2.12. QΓ0(R/I) and QΓI(R) have same chromatic number and clique number.

Proof. It follows from Proposition 2.10 and Theorem 2.11. �

Theorem 2.13. Let I be a proper ideal of R and a, b ∈ R\
√

I. Then the following
statements hold:

(1) If a + I is adjacent to b + I in Γ(R/I), then a is adjacent to b in QΓI(R).
(2) If a is adjacent to b in QΓI(R), then a+

√
I and b+

√
I are always distinct elements,

and also they are adjacent in Γ(R/
√

I). Furthermore, QΓI(R) is isomorphic to a
subgraph of Γ(R/

√
I).

Proof. (1) Suppose that a + I v b + I in Γ(R/I). Hence (a + I)(b + I) = 0 + I, so ab ∈ I.
Since our assumption is a, b ∈ R\

√
I, we have a v b in QΓI(R).

(2) Suppose that a v b in QΓI(R) and assume on the contrary that a +
√

I = b +
√

I.
Then ab ∈ I and a − b ∈

√
I. Hence a(a − b) ∈

√
I, it follows a2 ∈

√
I. Thus a ∈

√
I,

a contradiction. Consequently, a +
√

I ̸= b +
√

I. Now, since ab ∈ I and a, b ∈ R\
√

I,

(a +
√

I)(b +
√

I) = 0 +
√

I. It means a +
√

I v b +
√

I in Γ(R/
√

I).
Suppose that the vertices of Γ(R/

√
I) is {ai+

√
I : ai /∈

√
I}. Now, we show that QΓI(R)

is isomorphic to a subgraph of Γ(R/
√

I). We define a graph G with vertices {ai : ai +
√

I

is a vertex of Γ(R/
√

I)} where ai v aj if whenever aiaj ∈ I. Then G is a subgraph of
Γ(R/

√
I). �

The next remark gives a method to construct QΓI(R) from Γ(R/
√

I).

Remark 2.14. Let I be an ideal of a ring R. We construct the graph QΓI(R) as the
following method: Let {aλ}λ∈Λ be a set of coset representatives of the vertices of Γ(R/

√
I).

We define a graph G with vertices {ai : ai +
√

I is a vertex of Γ(R/
√

I)}. If aiaj /∈ I, then
omit these vertices. Hence ai v aj whenever aiaj ∈ I. Then G is a subgraph of Γ(R/

√
I).

Note that ω(QΓI(R)) ≤ ω(Γ(R/
√

I)) since QΓI(R) is isomorphic to a subgraph of
Γ(R/

√
I).

Theorem 2.15. Let I be a proper ideal of a ring R. If there exists a vertex of QΓI(R)
which is adjacent to every other vertex of QΓI(R), then I = 0.

Proof. Suppose that a ∈ QΓI(R) is adjacent to every other vertex of QΓI(R) and I ̸= 0.

Then there exists 0 ̸= b ∈ I. Observe that a ̸= a + b ∈ R\
√

I and a + b is also a vertex
which is adjacent to every other vertex of QΓI(R). Hence a(a + b) ∈ I; and so we have
a2 ∈ I, a conradiction. Thus I = 0. �
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The following example shows that the converse of Theorem 2.15 is not true in general.

Example 2.16. Let R = Z60 and I = 0. Then there is no vertex in QΓ0(Z60) which is
adjacent to every other vertex in this graph. Indeed, 4, 5 ∈ QΓ0(Z60) and d(4, 5) = 3. (one
of the path is 4 v 15 v 12 v 5)

Example 2.17. Let R = Z2 × Zp and I = (0, 0), where n ≥ 2. Then, it is clear that the
vertex (1, 0) is adjacent to (0, 1), (0, 2), . . . , (0, p − 1).

Recall that a vertex a of a connected graph G is said to be a cut-vertex of G if there
exist vertices x and y of G such that a is in every path from x to y where x, y and a are
distinct.

Theorem 2.18. Let I be a nonzero proper ideal of R. Then QΓI(R) has no cut-vertex.

Proof. Suppose that a is a cut-vertex of QΓI(R). Then there exist vertices x,y ∈ R\
√

I
such that a lies on every path from x to y. Since diam(QΓI(R)) ≤ 3, the shortest path
from x to y is of the length 2 or 3.
Case I: Suppose that x v a v y is a path of the shortest lenght from x to y. Hence
x +

√
I ̸= a +

√
I and y +

√
I ̸= a +

√
I by Theorem 2.13. Let 0 ̸= i ∈ I. Since x(a + i) ∈ I

and y(a + i) ∈ I, we conclude that x v (a + i) v y is a path in QΓI(R), a contradiction.
Case II: Suppose that x v a v b v y is a path of the shortest lenght from x to y. Hence
a +

√
I ̸= b +

√
I by Theorem 2.13. Let 0 ̸= i ∈ I. Since x(a + i) ∈ I and b(a + i) ∈ I, we

conclude that x v (a + i) v b v y is a path in QΓI(R), a contradiction.
Thus QΓI(R) has no cut-vertex. �

3. Ideal-based quasi zero divisor graph of a Noetherian multiplication
ring

Recall that a ring R is called a multiplication ring if whenever I, J are ideals of R with
I ⊆ J , then there exists an ideal K of R such that I = JK. The aim of this section is to
characterize ideal-based quasi zero divisor graphs of Noetherian multiplication rings. For
this purpose, we need the following lemma.

Lemma 3.1. Let R be a ring with identity. Then, the following are equivalent:
(1) R is a Noetherian multiplication ring.
(2) Each primary ideal of R is a prime power, i.e., if Q is a primary ideal of R, then

Q = P n for some P prime ideal of R and n ≥ 0.

Proof. The result is clear from [7, 39.4 Proposition] and [7, Exercise 9 in S. 39]. �
Throughout, R will be a Noetherian multiplication ring. Note that Dedekind Domains

are particular examples of Noetherian multiplication ring. Thus all results in this section
is also valid for Dedekind Domains.

Theorem 3.2. Let I be a proper ideal of R. Then, one of the following statements holds:
(1) QΓI(R) = ∅.
(2) QΓI(R) is a complete bipartite graph.
(3) QΓI(R) is a k-partite graph for k ≥ 3.

Proof. Suppose that QΓI(R) ̸= ∅. Since R is Noetherian, I has a primary decomposition.
Then, I = Q1 ∩ · · · ∩ Qk where Qi (i = 1, ..., k) are primary ideals of R. From Lemma 3.1,
Qi = P αi

i for some prime ideal Pi of R and αi ≥ 1. Hence I = P α1
1 ∩ · · · ∩ P αk

k .
Case I. If k = 1, then QΓI(R) = ∅ by Proposition 2.2 (2).
Case II. Let k = 2. Then, I = P α1

1 ∩ P α2
2 where P1, P2 are distinct primes. Hence the

vertex set of the graph V = (P α1
1 ∪ P α2

2 )\(P1 ∩ P2). Put V1 = P α2
2 \P1 and V2 = P α1

1 \P2.
Note that in this case V1 ∩ V2 = ∅ and V1 ∪ V2 = V . Moreover, V1, V2 are independent
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sets and any vertex in V1 is adjacent to any arbitrary vertex in V2. Thus, QΓI(R) is a
complete bipartite graph.

Case III. Suppose that k ≥ 3. We construct the vertex set V of QΓI(R) and partitions
as follows:

V =
(

k∪
i=1

P αi
i

)
\
(

k∩
i=1

Pi

)

and define Vi = V \Pi for i = 1, 2, . . . , k. We claim that V =
k∪

i=1
Vi. Suppose there exists

x ∈ V \
k∪

i=1
Vi, then x ∈

k∩
i=1

V c
i =

k∩
i=1

Pi, a contradiction as x ∈ V . Thus V =
k∪

i=1
Vi. Clearly

Vi’s are independent sets. But Vi’s are not pairwise disjoint. However, consider the sets
recursively

W1 = V1; W2 = V2 \ V1; W3 = V3 \ (V1 ∪ V2), . . . , Wk = Vk \
(

k−1∪
i=1

Vi

)
.

It can be checked that Wi’s are disjoint independent sets with
k∪

i=1
Wi = V . Thus QΓI(R)

is k-partite. �

Corollary 3.3. Let I = P α1
1 ∩ · · · ∩ P αk

k where Pi’s are distinct prime ideals of R and
k > 1. Then the clique number ω of QΓI(R) is k.

Proof. From Theorem 3.2, we have that QΓI(R) is k-partite. We claim that ω ≤ k. If
not, let ω ≥ k + 1. Then, by pigeon-hole principle, there exist at least two vertices a and
b from the same partite set in any clique. However, as partite sets are independent, we
arrive at a contradiction. Thus ω ≤ k. Now, for each i = 1, 2, . . . , k, choose an element

xi ∈
k∩

t=1
t̸=i

P αt
t . Clearly xi’s belong to V (QΓI(R)). Moreover, xi is adjacent to xj in QΓI(R)

for i ̸= j. Thus we get a clique of size k. Hence the corollary follows. �

Corollary 3.4. Let I = P α1
1 ∩ · · · ∩ P αk

k where Pi’s are distinct prime ideals of R and
k > 1. Then, χ(QΓI(R)) = k.

Proof. Since QΓI(R) is k-partite, we have χ ≤ k. Again, as ω = k, we have χ ≥ k. Thus
the corollary follows. �

Theorem 3.5. Let I = P α1
1 ∩ · · · ∩ P αk

k where Pi’s are distinct prime ideals of R and
k > 1. Then, diameter and girth of QΓI(R) is given by

diam(QΓI(R)) =
{

2, if k = 2
3, if k > 2 and gr(QΓI(R)) =

{
4, if k = 2
3, if k > 2 .

Proof. If I = P1
α1 ∩ P2

α2 , then by Theorem 3.2, QΓI(R) has diameter 2 and girth 4.
If there are more than two distinct prime ideals containing I, then let P1, P2, P3 be three

distinct prime ideals of R. Consider the vertices u ∈ P1
α1 and v ∈ P2

α2 . Clearly they
are not adjacent. If possible, let a be a common neighbour of u and v. Then, au, av ∈ I

and hence a ∈
k∩

j=2
P

αj

j and a ∈
k∩

j=1
j ̸=2

P
αj

j , i.e., a ∈
k∩

j=1
Pj . However, this contradicts that a ∈

V (QΓI(R)). Hence d(u, v) > 2. Now, by Theorem 2.6, we know that diam(QΓI(R)) ≤ 3.
Thus diam(QΓI(R)) = 3.
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Again, consider a ∈
k∩

j=2
P

αj

j , b ∈
k∩

j=1
j ̸=2

P
αj

j , c ∈
k∩

j=1
j ̸=3

P
αj

j . Clearly a, b, c ∈ V (QΓI(R)) and

they form a triangle. Hence gr(QΓI(R)) = 3 and the theorem follows. �
Let R = Z. Then, any ideal of R is of the form mZ. We conclude the following

characterizations for ideal-based quasi zero divisor graph of Z by the next Theorem and
Corollaries:

Theorem 3.6. Let m = p1
α1p2

α2 · · · pk
αk where pi’s are distinct primes and k > 1. Then

domination number γ of QΓmZ(Z) is k.

Proof. For i = 1, 2, . . . , k, consider the vertices xi = m/pi
αi . We claim that

S = {xi : i = 1, 2, . . . , k} is a dominating set for QΓmZ(Z). Let x be an arbitrary vertex in
QΓmZ(Z). Then p1p2 · · · pk does not divide x and there exists j ∈ {1, 2, . . . , k} such that
pj

αj divide x. Observe that xxj ∈ mZ, i.e., x is adjacent to xj . Thus S is a dominating
set and hence γ ≤ k.

If possible, let γ < k. Then there exists a dominating set S′ with k − 1 vertices. Let
S′ = {y1, y2, . . . , yk−1}. Consider the set of vertices D = {p1

α1 , p2
α2 , . . . , pk

αk}. If any
pi

αi ∈ S′, then we replace pi
αi in D by ppi

αi where p is a prime which does not divide m
and ppi

αi /∈ S′. This can be guaranteed as choice of such a p is infinite. Thus D ∩ S′ = ∅.
Since S′ is a dominating set, each element of D is adjacent to some element of S′. We
claim that two distinct elements of pi

αi and pj
αj of D can not be dominated by same yt.

Because, if it happens then pi
αiyt, pj

αj yt ∈ mZ, i.e., both m/pi
αi and m/pj

αj divides yt,
i.e., their l.c.m. divides yt, i.e., m|yt, i.e., yt ∈ mZ, a contradiction. Therefore distinct
pi

αi ’s are dominated by distinct elements of S′ and hence S′ should contain at least k
vertices, a contradiction. Thus γ = k and the theorem holds. �
Corollary 3.7. Let I = mZ be an ideal of Z. Then,

(1) If m = 0 or m = pk where p is prime and k is a positive integer, then QΓmZ(Z) is
a null graph.

(2) If m = p1
α1p2

α2 where p1, p2 are distinct primes, then QΓmZ(Z) is a complete
bipartite graph with diam(QΓmZ(Z)) = 2 and gr(QΓmZ(Z)) = 4.

(3) If m = p1
α1p2

α2 · · · pk
αk where pi’s are distinct primes and k > 2, then QΓmZ(Z) is

a k-partite graph with diam(QΓmZ(Z)) = gr(QΓmZ(Z)) = 3, clique number ω = k,
chromatic number χ = k and the domination number γ = k.

As an application of Theorem 2.9, Theorem 3.5 and Theorem 3.6, we conclude the
following result for Zm with respect to the the zero ideal.

Corollary 3.8. Let m = p1
α1p2

α2 · · · pk
αk where pi’s are distinct primes and k > 1. Then,

(1) the diameter and girth of QΓ0(Zm) are given by

diam(QΓ0(Zm)) =
{

2, if k = 2
3, if k > 2 and gr(QΓ0(Zm)) =

{
4, if k = 2
3, if k > 2 .

(2) the domination number, the chromatic number and the clique number of QΓ0(Zm)
are k.
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