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Abstract

Let R be a commutative ring with identity and I a proper ideal of R. In this paper we
introduce the ideal-based quasi zero divisor graph QI';(R) of R with respect to I which is
an undirected graph with vertex set V = {a € R\VT : ab € I for some b € R\\/I} and two
distinct vertices a and b are adjacent if and only if ab € I. We study the basic properties
of this graph such as diameter, girth, dominaton number, etc. We also investigate the
interplay between the ring theoretic properties of a Noetherian multiplication ring R and
the graph-theoretic properties of QT';(R).
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1. Introduction

The concept of zero divisor graph and studies on graph-theoretic properties of com-
mutative rings were first initiated by Beck in [4]. However, in that paper he was mainly
interested in colorings. Then, Anderson and Livingston [2] introduced and studied the
zero-divisor graph of a commutative ring R, denoted by I'(R), whose vertices are the
nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if and only if
xy = 0. Later on, the study on graphs associated with rings has attracted many researchs
(see for instance [1], [3], [10] and [11]).

Now, let us recall some standard terminology and notations which will be used in this
paper. Throughout, R will be a commutative ring with identity and as usual, the rings of
integers and integers modulo n will be denoted by Z and Z,,, respectively.

Let I be a proper ideal of R. The radical of I, denoted by /T, is defined by {a € R :
a™ € I for some positive integer n}. In particular, the set of all nilpotent elements of R is
denoted by /0. The ideal I of R is called primary if whenever a,b € R with ab € I and
a ¢ I implies b € VT, and called prime if ab € I and a ¢ I implies b € I. In [6], Fuchs
introduced and studied the concept of quasi-primary ideal. According to that paper, a
proper ideal I is called quasi-primary if whenever a,b € R with ab € I and a ¢ VT implies
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b € VI, or equivalently if /T is prime. Clearly, every prime ideal is primary and every
primary ideal is quasi-primary. It is also well-known that if I is a primary ideal, then
VT is a prime ideal. However, the converse of this relation does not hold in general. For
instance, let R be a ring of all polynomials that coefficient of z is divisible by 3 with degree
at most n for some positive integer n. Consider the ideal I = (922,323, 2%, 2%, 2°) of R.
Then, VI = (3,22, 2%) is prime ideal, but I is not primary since 922 € I but neither
2% € I nor 9 € V/I. For undefined notions about ring theory, we refer the reader to [9].

Let G = (V, E) be a graph, where V = V(G) and E = E(G) is the set of vertices and the
set of edges, respectively. Then, G is called connected if there is a path between any two
distinct vertices and is called complete if all vertices are adjacent. The complete graph on
n vertices is denoted by K,,. The clique number, w(G), is the greatest integer n > 1 such
that K, C G, and w(G) = o if K, C G for all n > 1. The distance between two distinct
vertices a and b, denoted by d(a,b), is the length of a shortest path connecting a and b.
If such a path does not exists, then we write d(a,b) = oco. It is clear that d(a,a) = 0.
The diameter of G will be denoted by diam(G) and defined as diam(G) = sup{d(a,b) : a
and b are vertices of G}. The girth of G, denoted by gr(G), is defined as the length of
the shortest cycle in G and gr(G) = oo if G has no cycle. A nonempty subset D of the
vertex set V(G) is called a dominating set if every vertex V(G\D) is adjacent to at least
one vertex of D. The domination number v(G) is the minimum cardinality among the
dominating sets of G. The chromatic number of G is defined as the minimal number of
colors needed to color G and denoted by x(G). We refer the reader to [5] for general
background and undefined notions on graph theory.

In [12], Redmond defined the ideal-based zero divisor graph, I't(R), for a proper ideal
I of R with vertices {x € R\I : zy € I for some y € R\I}, where two distinct vertices x
and y are adjacent if and only if zy € I. Quasi-primary ideals and ideal-based zero divisor
graphs motivated us to define a new graph containing elements of R\v/T as vertices.

The aim of this paper is to introduce and study some of the basic properties of the
ideal-based quasi zero divisor graph QT'1(R) of a ring R which is an undirected graph with
vertices {a € R\VT : ab € I for some b € R\\/T} where I is a proper ideal of R and two
distinct vertices a and b are adjacent if and only if ab € I. Throughout the study we write
a «~ b whenever the vertices ¢ and b are adjacent.

In Section 2, we start with some trivial relations and some examples showing that under
which conditions QT';(R) and I';(R) coincides. We also investigate the graph properties of
QT'7(R) such as diameter, girth, chromatic number, etc. In Theorem 2.9 the relationship
between QI';(R) and QT'7(R/I) is investigated. Among many other results in this section
it is shown that QI'7(R) has no cut-vertex (Theroem 2.18).

In Section 3, we study ideal-based quasi zero divisor graphs of Noetherian multiplication
rings. Especially, we investigate clique and chromatic numbers besides the diameter and
the girth of the graph QI';(R) for a Noetherian multiplication ring. In particular, the ideal-
based quasi zero divisor graph of Z,, is entirely characterized. Moreover, we conclude the
characterization for QI';(R) (Theorem 3.2).

2. Basic properties of ideal-based quasi zero divisor graph

We start this section with an example to demonstrate the structure of QI';(R) and the
relationship between QT';(R), I';(R) and T'(R).

Example 2.1. (1) Let R =Z¢ and I = 0. Then, QI';(R), I'1(R) and I'(R) coincide.
(2) Let R = Zy2 and I = 0. Then, QI';(R) and I';(R) are different graphs as shown
below. Moreover, this example denies the probable idea that the graph QI';(R)

arise by taking radical of an ideal in ideal-based zero divisor graph.
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Figure 1. QT'o(Zs), I'o(Zs), I'(Zs)

o———O0—°0
2 3 4

Figure 2. QT (g)(Z12) (left) and I'(g)(Z12) (centre) and I, 5(Z12) (right)
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To see the general case for Z,, please see the Corollaries 3.7 and 3.8.

Proposition 2.2. Let R be a ring and I a proper ideal of R.

(1) If R/I is a reduced ring (or equivalently, if /T = I), then the ideal-based quasi
zero divisor graph and the ideal-based zero divisor graph coincide.
(2) I is a quasi primary ideal of R if and only if QT'7(R) = 0.

Proof. Clear by definitions. O

Proposition 2.3. Let R be a ring and I a proper ideal of R.
(1) QT'1(R) is an induced subgraph of T'r(R).
(2) QT1(R) is a subgraph of T' ;(R).

Proof. (1) Let a «~ bin QT'7(R). Then ab € I for b € R\v/T and so ab € I for b € R\I.
Hence, a «~ b in I'1(R).
(2) This part is clear as ab € I implies ab € V/T.
O

The following example shows that QI';(R) need not to be an induced subgraph of
L 7(R).
Example 2.4. Let R = Zgp and I = 0. Then, it is easy to see that the vertices 10 and
15 are adjacent in I' 7(R) but not adjacent in QI';(R). So, QI'[(R) is not an induced
subgraph of I' 7(R).

In Example 2.4, observe that v/I # I and QT'7(R) is not an induced subgraph. But,
VI # I does not mean that QT'7(R) is not an induced subgraph (see the graphs left and
right in Figure 2).

Lemma 2.5. Let R be a ring and I a nonzero proper ideal of R. Then QT'1(R) cannot be
complete, i.e., diam(QT'(R)) > 1.

Proof. Assume that diam(QI';(R)) = 1. Suppose that z is a vertex of QI';(R). It is
clear that = + i # x is also a vertex of QI';(R), where 0 # i € I. Hence z(z +1i) € I
implies 22 € I, a contradiction. Thus, diam(QT'(R)) > 1. O

Note that in Lemma 2.5, the condition I # 0 is not superficial. For instance, put p = 2
in Example 2.17. Then, QI'¢(Zs x Z3) is complete with the only adjacent vertices (1,0)
and (0,1).
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Theorem 2.6. Let I be a proper ideal of R. Then QI';(R) is a connected graph with
diam(QT'1(R)) < 3.

Proof. Let a and b are distinct vertices of QT'7(R). If ab € I, then a « b, so d(a,b) = 1.
Suppose that ab ¢ I. Then there exist ¢,d € R\\/.T such that ac € [ and bd € I. If ¢ = d,
then a « ¢ « b, so d(a,b) = 2. Assume that ¢ # d. Then we have the following cases:
Case I. If ¢d ¢ /T, then a « cd « b, so d(a,b) = 2.
Case II. If cd € /T — I, then there exists an integer n > 2 such that (cd)” € I. Hence
awc”~d* b, sod(a,b) = 3.
Case III. If ¢d € I, then a v~ ¢ «~~d «~ b, so d(a,b) = 3.

Thus QT'7(R) is connected and diam(QT'1(R)) < 3. O

<

Theorem 2.7. Let I be a proper ideal of R. If QI'1(R) contains a cycle, then gr(QT'1(R))
4.

Proof. Assume that QI'j(R) contains a cycle ag v~ aj « - -+« ay, v ag such that a;a; ¢ I
in case j # i+ 1 for all i,j € {0,1,...,n}. Here we have two cases: aja,_1 ¢ VI or
a1p—1 € \/.7

Case I: Assume that aja,—1 ¢ V. Then, we have ag «~ a1a,_1 « ay. Here, if a1a,_1 = ag
then a% e€l,ie. ag € VI , a contradiction. Similarly, one can see that aia,—1 # a,. Hence,
apg » a10p_1 » Gy > ag is a 3—cycle.

Case IT: Assume that aja,—; € v/I. Then there exists the least positive integer k > 2
such that (aja,_1)* € I. Hence ag v a¥ «~ af_| « a, « ag is a 4—cycle. O

Thus gr(QT(R)) < 4.

Theorem 2.8. Let R be a ring and I a proper ideal of R which is not quasi primary.
Then gr(QT 1y(Rlz))) < 4.

Proof. Since [ is not quasi primary, there exist a,b € R\\/j such that ab € I. Hence,
a b azx ~br v aisad—cycle. Thus, gr(QT ) (R[r])) < 4. O

In the next theorem, we give a relationship between QI';(R) and QT'o(R/I).

Theorem 2.9. Let I be a proper ideal of R and a,b € R\ V1.
(1) a is adjacent to b in QT 1(R) if and only if a+ I is adjacent to b+ I in QTo(R/I).
(2) diam(QL'1(R)) = diam(QTo(R/I)) and gr(QT1(R)) = gr(QTo(R/T)).

Proof. (1) It is to be noted that a € V(QT';(R)) if and only if a+ 1 € V(QT'o(R/I)).
Nowa~binQI'j(R) = abel < (a+)(b+I)=1<a+I1~b+1in QTo(R/I).

At this point, we should be careful about the case when a ~ b in QT';(R) but
a+ I = b+ I, because if this happens then the claim fails. However, we will show
that this situation does not happen. For, if a ~ b in QT';(R) and a +1 = b+ I,
then we have ab,a — b € I. This implies a? — ab = a(a — b) € I and hence a? € I,
i.e., a € VI, a contradiction.

(2) From part (1), it is clear that d(a,b) = 1 in QI';(R) if and only if d(a+1,b+1) =1
in QTo(R/I). Now, d(a,b) =2 in QI';(R) if and only if ab ¢ I and there exists ¢ €
R\ VT such that ac,bc € I if and only if d(a + I,b+I) = 2 in QTo(R/I). Sim-
ilarly, d(a,b) = 3 in QI'7(R) if and only if ab ¢ I and there exists ¢ € R\
VT such that ac,be € I and there exist ¢1,c2 € R\ VT such that acy,cic,bey € 1
if and only if d(a + I,b+ 1) =3 in QT'o(R/I).

From Theorem 2.6, as diameter of any ideal-based quasi zero divisor graph is less
than or equal to 3, we have diam(QI';(R)) = diam(QL'o(R/I)) and gr(QT'1(R)) =
gr(QTo(R/1).

O
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A graph H is called a retract of G if there are homomorphisms p : G — H and
¢ : H — G such that po ¢ = idy. The homomorphism p is called a retraction (see
[8, Definition 2.16]).

Proposition 2.10. [8, Observation 2.17] If H is a retract of G, then chromatic number
and clique number of G and H are same.

Theorem 2.11. QT'4(R/I) is a retract of QI'1(R).

Proof. Define a map p : V(QT'1(R)) — V(QTo(R/I)) by p(x) = x + I. Again, for
each coset x + I € V(QT'g(R/I)), choose and fix a representative z* € x + I and define
0 : V(QTo(R/I)) — V(QT1(R)) by w(x + I) = z*. It is clear from Theorem 2.9 part (1)
that p is a surjective graph homomorphism and ¢ is a graph homomorphism.

Moreover, po ¢ : V(QTo(R/I)) — V(QT[(R)) is given by po p(x + 1) = p(z*) =
x*+1=x+1,ie., pop isthe identity map on QT'o(R/I). Thus QT'¢(R/I) is a retract
of QT (R). O

Corollary 2.12. QT'o(R/I) and QT'1(R) have same chromatic number and clique number.
Proof. It follows from Proposition 2.10 and Theorem 2.11. O

Theorem 2.13. Let I be a proper ideal of R and a, b € R\\ﬁ Then the following
statements hold:
(1) If a+ I is adjacent to b+ I in I'(R/I), then a is adjacent to b in QI'1(R).
(2) Ifa is adjacent to b in QT [(R), then a+/I and b++/T are always distinct elements,
and also they are adjacent in T(R/\I). Furthermore, QU 1(R) is isomorphic to a
subgraph of T(R/VT).

Proof. (1) Suppose that a+1 b+ 1 in I'(R/I). Hence (a+1)(b+1) =0+1,s0 ab € 1.
Since our assumption is a, b € R\VI, we have a -~ b in QT;(R).

(2) Suppose that a « b in QT'7(R) and assume on the contrary that a + /T = b+ /1.
Then ab € I and a — b € v/I. Hence ala —b) € V1, it follows a? € /I. Thus a € V1,
a contradiction. Consequently, a + VI # b+ vI. Now, since ab € I and a,b € R\\ﬁ ,
(a+VI)(b+VI)=0++I. It means a + T« b+ /T in T(R/VI).

Suppose that the vertices of T'(R/VT) is {a; 4+ : a; ¢ /T}. Now, we show that QT';(R)
is isomorphic to a subgraph of I'(R/+v/T). We define a graph G with vertices {a; : a; + /I
is a vertex of I'(R/VI)} where a; « a; if whenever a;a; € I. Then G is a subgraph of

T(R/VI). O
The next remark gives a method to construct QT';(R) from T'(R/V/T).

Remark 2.14. Let I be an ideal of a ring R. We construct the graph QT';(R) as the
following method: Let {ay}ca be a set of coset representatives of the vertices of I'(R/v/T).
We define a graph G with vertices {a; : a; ++/I is a vertex of I'(R/VT)}. If a;a; ¢ I, then
omit these vertices. Hence a; «» a; whenever a;a; € I. Then G is a subgraph of T'(R/v/T).

Note that w(QT'7(R)) < w(I'(R/VI)) since QT'7(R) is isomorphic to a subgraph of
T(R/VI).

Theorem 2.15. Let I be a proper ideal of a ring R. If there exists a vertexr of QT'1(R)
which is adjacent to every other vertex of QT'1(R), then I = 0.

Proof. Suppose that a € QT';(R) is adjacent to every other vertex of QT';(R) and I # 0.
Then there exists 0 # b € I. Observe that a # a +b € R\WI and a + b is also a vertex
which is adjacent to every other vertex of QI';(R). Hence a(a + b) € I; and so we have
a® € I, a conradiction. Thus I = 0. O
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The following example shows that the converse of Theorem 2.15 is not true in general.

Example 2.16. Let R = Zgp and I = 0. Then there is no vertex in QI'o(Zgo) which is
adjacent to every other vertex in this graph. Indeed, 4,5 € QI'¢(Zeo) and d(4,5) = 3. (one
of the path is 4 «» 15 «~ 12 «~ 5)

Example 2.17. Let R = Zy x Zy, and I = (0,0), where n > 2. Then, it is clear that the
vertex (1,0) is adjacent to (0,1),(0,2),...,(0,p —1).

Recall that a vertex a of a connected graph G is said to be a cut-vertex of G if there
exist vertices z and y of G such that a is in every path from z to y where x,y and a are
distinct.

Theorem 2.18. Let I be a nonzero proper ideal of R. Then QT'1(R) has no cut-verte.

Proof. Suppose that a is a cut-vertex of QT'7(R). Then there exist vertices z,y € R\VI
such that a lies on every path from z to y. Since diam(QTI';(R)) < 3, the shortest path
from x to y is of the length 2 or 3.
Case I: Suppose that x «~ a v~ y is a path of the shortest lenght from z to y. Hence
z+VI # a++T and y+ I # a++/1 by Theorem 2.13. Let 0 #i € 1. Since x(a+1) € 1
and y(a + i) € I, we conclude that x «~ (a +1i) «~ y is a path in QT'7(R), a contradiction.
Case II: Suppose that z «~ a «~ b« y is a path of the shortest lenght from x to y. Hence
a++T # b+ T by Theorem 2.13. Let 0 # i € I. Since z(a+14) € I and b(a +1) € I, we
conclude that  «~ (a + i) «~ b« y is a path in QI';(R), a contradiction.

Thus QT';(R) has no cut-vertex. O

3. Ideal-based quasi zero divisor graph of a Noetherian multiplication
ring

Recall that a ring R is called a multiplication ring if whenever I, J are ideals of R with
I C J, then there exists an ideal K of R such that I = JK. The aim of this section is to
characterize ideal-based quasi zero divisor graphs of Noetherian multiplication rings. For
this purpose, we need the following lemma.

Lemma 3.1. Let R be a ring with identity. Then, the following are equivalent:

(1) R is a Noetherian multiplication ring.
(2) Each primary ideal of R is a prime power, i.e., if Q is a primary ideal of R, then
Q = P" for some P prime ideal of R and n > 0.

Proof. The result is clear from [7, 39.4 Proposition] and [7, Exercise 9 in S. 39]. O

Throughout, R will be a Noetherian multiplication ring. Note that Dedekind Domains
are particular examples of Noetherian multiplication ring. Thus all results in this section
is also valid for Dedekind Domains.

Theorem 3.2. Let I be a proper ideal of R. Then, one of the following statements holds:
(1) Qry(R) =0.
(2) QT'1(R) is a complete bipartite graph.
(3) QT'1(R) is a k-partite graph for k > 3.

Proof. Suppose that QT';(R) # (). Since R is Noetherian, I has a primary decomposition.
Then, I = Q1 N---NQg where Q; (i =1, ..., k) are primary ideals of R. From Lemma 3.1,
Q; = P for some prime ideal P; of R and a; > 1. Hence I = P N --- N P*.

Case I. If k£ = 1, then QT';(R) = () by Proposition 2.2 (2).

Case IIL. Let k = 2. Then, I = P/ N Py? where P;, P; are distinct primes. Hence the
vertex set of the graph V' = (Pt U Py?)\(P1 N P2). Put Vi = Py*\ Py and Vo = P\ P.
Note that in this case V1 N Ve = @ and V3 U V5 = V. Moreover, Vi, Vs are independent
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sets and any vertex in Vj is adjacent to any arbitrary vertex in V5. Thus, QI';(R) is a
complete bipartite graph.
Case III. Suppose that & > 3. We construct the vertex set V' of QI';(R) and partitions

as follows:
k k
v= (U ) (0n)
i=1 i=1

k
and define V; = V\P; for i = 1,2,..., k. We claim that V = U V;. Suppose there exists
i=1
k k k k
xeV\ U V;, then x € ﬂ Ve = ﬂB, a contradictionasx € V. Thus V = U V;. Clearly

i=1 i=1 i=1 i=1
Vi’s are independent sets. But V;’s are not pairwise disjoint. However, consider the sets
recursively

k—1
Wi =Vi;Wo =W\ Vi; Wy = V3 \ (ViU Va),...., W =V \ (U Vi) :
i=1
k
It can be checked that W;’s are disjoint independent sets with U W; = V. Thus QT';(R)
i=1
is k-partite. O
Corollary 3.3. Let I = P{"* N--- N P* where P;’s are distinct prime ideals of R and
k > 1. Then the cliqgue number w of QI'1(R) is k.

Proof. From Theorem 3.2, we have that QI';(R) is k-partite. We claim that w < k. If
not, let w > k + 1. Then, by pigeon-hole principle, there exist at least two vertices a and
b from the same partite set in any clique. However, as partite sets are independent, we

arrive at a contradiction. Thus w < k. Now, for each i = 1,2,...,k, choose an element
k

x; € ﬂPtO‘t. Clearly z;’s belong to V(QI'r(R)). Moreover, x; is adjacent to z; in QT'7(R)

t=1
t£i
for i # j. Thus we get a clique of size k. Hence the corollary follows. O

Corollary 3.4. Let I = P{" N --- N P.* where P;’s are distinct prime ideals of R and
k> 1. Then, x(QT'1(R)) = k.

Proof. Since QT';(R) is k-partite, we have x < k. Again, as w = k, we have x > k. Thus
the corollary follows. O

Theorem 3.5. Let I = P{" N --- N P* where P;’s are distinct prime ideals of R and
k > 1. Then, diameter and girth of QT'1(R) is given by

s {173 e onin= (3 1

Proof. If I = Pi“' N P,*?, then by Theorem 3.2, QI';(R) has diameter 2 and girth 4.

If there are more than two distinct prime ideals containing I, then let Py, P», P3 be three
distinct prime ideals of R. Consider the vertices u € Pi*' and v € P»®?. Clearly they
are not adjacent. If possible, let a be a common neighbour of v and v. Then, au,av € I

k k k
and hence a € ﬂ Pjaj and a € ﬂ Pjaj ,l.e.,aé€ ﬂ P;. However, this contradicts that a €
j=2 j=1 j=1
J#2

V(QT1(R)). Hence d(u,v) > 2. Now, by Theorem 2.6, we know that diam(QI';(R)) < 3.
Thus dieam(QT'1(R)) = 3.
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k k k
Again, consider a € ﬂPjaj, be ﬂPjaj, ce ﬂp;-lj. Clearly a,b,c € V(QI'1(R)) and

=2 j=1 j=1
’ i#2 i#3
they form a triangle. Hence gr(QI';(R)) = 3 and the theorem follows. O

Let R = 7Z. Then, any ideal of R is of the form mZ. We conclude the following
characterizations for ideal-based quasi zero divisor graph of Z by the next Theorem and
Corollaries:

Theorem 3.6. Let m = p1®1pa®2 - - pi.% where p;’s are distinct primes and k > 1. Then
domination number v of QU,7(Z) is k.

Proof. Fori=1,2,...,k, consider the vertices x; = m/p;*. We claim that

S ={x;:1=1,2,...,k} is a dominating set for QI';,,z(Z). Let = be an arbitrary vertex in
QT'z(Z). Then pips - - - pr does not divide = and there exists j € {1,2,...,k} such that
p;j* divide x. Observe that xx; € mZ, i.e., x is adjacent to x;. Thus S is a dominating
set and hence v < k.

If possible, let v < k. Then there exists a dominating set S’ with & — 1 vertices. Let
S" = {y1,y2,...,yk—1}. Consider the set of vertices D = {p1®*,p2°2,...,px*}. If any
p;% € S’, then we replace p;% in D by pp;* where p is a prime which does not divide m
and pp;* ¢ S’. This can be guaranteed as choice of such a p is infinite. Thus DN S’ = ().
Since S’ is a dominating set, each element of D is adjacent to some element of S’. We
claim that two distinct elements of p;** and p;% of D can not be dominated by same y;.
Because, if it happens then p;“y;, p;*y; € mZ, i.e., both m/p;* and m/p;* divides y;,
i.e., their L.c.m. divides y;, i.e., m|y, i.e., y» € mZ, a contradiction. Therefore distinct
p;®’s are dominated by distinct elements of S’ and hence S’ should contain at least k
vertices, a contradiction. Thus v = k and the theorem holds. O

Corollary 3.7. Let I = mZ be an ideal of Z. Then,

(1) If m =0 or m = p* where p is prime and k is a positive integer, then QU z(Z) is
a null graph.

(2) If m = p1™p2®2 where p1,p2 are distinct primes, then QTU,z(Z) is a complete
bipartite graph with diam(QUz(Z)) = 2 and gr(QT,,z(Z)) = 4.

(3) If m = p1“tpa®2 - - - pp™* where p;’s are distinct primes and k > 2, then QU ,z(Z) is
a k-partite graph with diam(QUz(Z)) = gr(QUmz(Z)) = 3, clique number w = k,
chromatic number x = k and the domination number v = k.

As an application of Theorem 2.9, Theorem 3.5 and Theorem 3.6, we conclude the
following result for Z,, with respect to the the zero ideal.
Corollary 3.8. Let m = p1®1po®2 - - - pp® where p; ’s are distinct primes and k > 1. Then,
(1) the diameter and girth of QUo(Zy,) are given by

{3 Y173 ot eni [ & 4173

(2) the domination number, the chromatic number and the clique number of QT o(Zyy,)
are k.
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