e-1SSN: 2564-7954 CUSJE 18(1): 009-023 (2021) Research Article

—W Cankaya University

‘ Journal of Science and Engineering CUJSE

https://dergipark.org.tr/cankujse

A New Extension of Modified Gamma and Beta Functions

Umar Muhammad Abubakar®™ ", Salim Rab1’u Kabara?"~', Muhammad Auwal Lawan3“*', Faisal Adamu Idris*

123 Department of Mathematics, Faculty of Computing and Mathematical Science, Kano University of Science and Technology, Nigeria
4Mathematical Science Department, Sa’adatu Rimi College of Education, Nigeria

Keywords Abstract
Gamma Function, In this research paper, a new extension of modified Gamma and Beta functions is
Beta Function, presented and various functional, symmetric, first and second summation relations,
Mittag-Leffler Mellin transforms and integral representations are obtained. Furthermore, mean,
Function, variance and moment generating function for the beta distribution of the new extension
Modified Gamma of the modified beta function are also obtained.
Function,
Modified Beta
Function,

Beta Distribution.

1. Introduction

The Classical Euler gamma and beta functions [1] are given by:

B(A,,4 _ it 1-t)* " d :M_

() !t S T(4+4) (1)
Where,

F(4) = [t*e"dt ,Re(4)>0,Re(4,) > 0. o

Classical Euler gamma and beta functions with their connection with Macdonald, error and Whittaker functions
[1, 2] was extended as follows:

T, (x)= Tt“ exp(—t —?j dt. 3)

Where,

Re(4,)>0, @ >0,
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and

B(%,ﬂz,w):l’t%1(1—t)‘2—1exp(—t(1w_t)]dt. (4)

Where
Re(w) >0,Re(4,) >0,Re(4,) >0

In 2014, Lee et al [3] generalized beta function given Chaudhry et al [2] as follows:

) :1 At(1—t)"™ — 2 U
B(4, 4@ 0) = [t (1-1) exp[tw(lt)w]t 5)

Where
Re(@) > 0,Re(4,) > 0,Re(4,) >0,Re(w) >0

In 2014, Choi et al [4] extended the beta function given by Chaudhry et al [2] as follows:

B(4 Ay, @,) = [t (1-1)" exp(_%_%jdt

Where
Re(@, ) >0,Re(a, ) >0,Re(4,) >0,Re(4,) >0

In 2011, Ozergin et al [5] presented the following generalizations of gamma and beta functions:

i) (A4)= J.t”i‘l .F (Kl; K, —t— %j dt (6)
Where
Re(4,)>0,Re(x;)>0,Re(x,)>0,Re(w)>0,Re(x)>0
(13.5) _ [ra _t)yet T
Bﬂ (21’21) _([t (1 t) 1F1(K1’K2’ t(l_t)Jdt (7)
Where

Re(x;)>0,Re(x,)>0,Re(w)>0,Re(4)>0,Re(4)>0

In 2013, Parmar [6] generalized the result obtained by Ozergin et al in [5] as follows:
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i) () = [t F (K‘l Kp; 1 —t%jdt 8)
Where
Re(x;)>0,Re(x,)>0,Re(w) >0,Re(x) >0, Re(w) >0
and
e (1-t)7 R | iy - ——— | dit 9
M%)I (1-t)"" (K“twle (©)
Where

Re(4,)>0,Re(4,)>0,Re(@)>0,Re(x; ) >0,Re(x,)>0,Re(w) >0

In 2015, Agarwal et al [7] used beta function introduced by Parmar [6] to develop two and three variables
Hypergeometric function as follows:

F) (4 dy Ty A y) = 32 (1), (), ot T8 A ) X

fpard B(A4, A4, —4) ! sl
(max{|x||y|} <LRe(@)=0;min{Re(x;)=0, RE(K2)>0 Re(a))zo})
ool (3 2 i dny) = 5 (a),, B e T )

= r+s B(lz ﬂ. lz)

B (4, 45,4 - 4) X v
B(4, 4 —4)  r!s!

(max {[x.|y[} <1:Re(e) > 0;min {Re(; ) > 0,Re(x,) > O,Re(5 ) > O.Re(x3 ) > 0,Re () > 0}

r,s,t=0

© BKlKZ t, —
3K1K2 (ﬂl 12 23 ﬂv 2’5 XY, Z = Z (Bﬂz'ﬂ_:rﬂ:i—;l)ﬂs Al)
Xr ys Zt

(), (&), (A

rtsttl
(max{|x||y||z|} <LRe(w)20;min{Re(x; )2 0,Re(x, ) = 0,Re(w) > 0})

In 2017, Pucheta [8] introduced an extended beta and gamma functions using one parameter Mittag-Leffler
function below:

I (4)= jt‘“E,q (—t)dt (10)

0

and

11



Abubakar et al. CUJSE 18(1): 009-023 (2021)

BY (4, 4,) = Jl.t)‘l‘l (1-t)*"E, (-ot(1-t))dt (11)

Recently, many generalizations, modifications, extensions and variants of gamma and beta functions [9 — 28]
have been proposed.

In this paper we generalized the result obtained by Pucheta [8] given in equations (10) and (11) by using two
parameters Mittag — Leffler function. The paper is organized as follows: Section one comprises introduction and
related literature. Section two covers Mellin transform functional, symmetry and summation relations. Section 3
discusses integral representations. Section 4 contains some statistical applications

2. Main Result

In this part, we introduce a new extension of the modified gamma and beta function with their properties such as
functional relation, summation relations and Mellin transform.

Definition 2.1. Let k;,k, € R* , A,€ C such that Re(ll) > 0. Then, the extended gamma function is given by:
T (4,) = j t"'E, , (-t) dt (12)
0

where Eer, () is two parameters Mittag — Leffler function denoted by

I’

—t = 13
KlKZ ZF K‘lr+K‘2) (13)
Other verities and generalizations of Mittag — Leffler function can be found in [29 — 33].
Remarks 2.1.
1. If k, =1, then I (1) =T" (4,) given in equation (10)
2. If K, =k, =1,then "2 (1) =T"(4) given in equation (2)
Lemma2.1. Let A, € C, Re(4,)>0and ky,k, € R* then
o A4 +1)r(1-(4,+1
F(K'z — K, (l+/11))
Proof
Let =4 +1
| (ﬂl +1) ke (3) _ JtS—lEK1 . ( t)dt
0
r(9)r1-9)
=M/{E —t) (%) =—"—"——= 15
{ KviZ( )}( ) F(KZ—Kllg) ( )
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Where M{EKM2 (—t)}(&) is Mellin transforms. Replacing ¢ = 4, +1 we obtain the required result.

Definition 2.2. Let @ >0, k;,k, € RT and 1,1, € C such that Re(},l) >0, Re(ﬂz) > 0. Then, the new
extended beta function is given by

5 (4, 2) = [0 (-0 B, (ot (1)) o (16)

Remarks 2.2.
1. If x, =1, then BS* (4, 4,) =B (4,4,) given inequation (11)

2. If K, =k, =1,then @ =0, then B (4, 4,)=B(A,4,) given in equation (1)

Theorem 2.1. Let @ >0, Ky, k; € RY, 15,1, € Csuch that Re(.4,) >0 and Re(4,)>0. Then

B (4, 2) = 5 A2

ST(Kkr+x,)

B(A4 +r,4, +r) (17)

Proof
Putting the definition of two parameters Mittag — Leffler function equation (16), we obtain

B;Fcl,)(z (/’;’1’&2 J.t/h -1 1— t) _12(_1) wrtr (1_t) dt (18)

= T(xr+x,)

On interchanging the order of integration and summation we have:

B (4 )= 3.

A (1)t 19
=T K1r+1(2)-|. ) 19)

Using the definition of classical beta function given in equation (1), we obtain the result.
Theorem 2.2. (Functional Relation) Let @ >0, k;,k, € R, 1;,4, € C such that Re(/l1 +1)>0and
Re(ﬂ2 +1) > 0. Then, the new extended functional relation is given by:

By (A& +1)+ B (A +14)=B(4,4) (20)

Proof
1
B (4 2 +1) + B (241,4,) = [t (1) E, , (-t (1-1) o
0
1

+[t (1=t E, . (-ot(1-1)) dt

0

13
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BE" (4, A, +1)+ B (4, +1,4,) Ht +1-1)" [t (1-1)* E, (-mt(1-1)) dt

Bt (4, 4, +1)+ B (4, +1,4,) = jtﬂfl 1-t)""E, . (-at(1-1)) dt
By (A4, +1)+ B (4 +14,) =B (4, 4,)

Theorem 2.3. (Symmetry Relation) Letw >0, Re(ﬂl) >0 and Re(XQ) > 0. Then, the new extended beta

symmetry relation is given by:
By (A4 ) =B (4, 4) (21)

Proof
On substituting t =1—u and interchanging the variables, we obtain the required result.

Theorem 2.4. (First Summation Relation) Let @ >0, 4, k, € R*, 1;,1, € Csuch that Re(4,) >0 and

Re(1-4,)>0. Then, the new extended beta first summation relation is given by:

B (4, 1-4, i VBW (A4 +11) (22)

r=0

Proof
1

By (A 1-2) = [ (1-1) “E,, (-at(1-1))dt

0

B (ﬂill_ﬂz)zjxﬂi—li(ﬂz)r X

0 r=0 r I

E,..., (-@x(1-x))dx (23)

On interchanging the order of integration and summation, equation (23) reduces to

B"l"2 /11 1- Zm:

r=0

jt%” "E,., (-at(1-1))dt (24)

On using extended beta representation, we obtain the required result from equation (24)

Theorem 2.5. (Second Summation Relation) Leto >0, k4, k, € R*, 1,1, € C such that Re(ﬂl) >0

Re(/g) > 0. Then the new extended second summation relation is given by:

B (4, 4,) = > BE* (4 +1,4, +1) (25)

r=0

Proof

14
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B2 (4,2,) = [£1 (11 E, ., (-ot(1-1)) a
BS"2 (4, 4,) = jt“ (1-t)*(1-t)"E_, (-at(1-1)) dt

B/ (%,@):jt‘i‘l(l—t)ﬂz i ‘E,.., (-@t(1-1))dt ((1—t)_l :gtr,|t|<1]

0 r=0

B (4, 4,) =i_l[t‘i”l 1-t)"E,_ (-at(1-1)) dt

r=0 o

By (A 4) = Z;Bm (A+r.4 +1)

Theorem 2.6. (Mellin Transform). Let @ >0, x;,k, € R* 9 € C, such that Re(:3) >0, Re(4, —9) >0
and Re(ﬂ2 — 9) > 0. Then, the new extended Mellin transformation is given by:

M{B;" (2,4, )}(8) = B(4 — 8.4, — )" (8) (26)

Proof

M{B2* (4,4, )} =T (jt“ (1-t)*"E, . (-at(1-1)) dtjdw (27)

Using uniform convergence of integral we can interchange the order of integration, equation (27) yield

1

M{BS (4, 4,)}(9) = [t"* (1-t)*" TwHEa’b (-at(1-t)) dtdw (28)

0 0

Letting u=at(1-t) and w=tthen dw =t (1- ) du and dw = dt , equation (28) gives

MBS (4, ,)}(9) = jwﬂrH (1-w)*"" dw Tu‘g-lez (~u) du

M{BE (4,4,)}(9) = [ (L)~ dw T (9)

0

MBS (4, 2,)}(8) = B(4 — 9,4, — )T () (29)
Remarks 2.3.
1. Puttingx, =1, in (26), we get M{Bgl"‘2 (/11,/12)}(,9) =B(4 -4 4, —9)I' (9) given in Pucheta
[8].
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2. Putting x; =k, =1, and $=1, in (26), we obtain J.Bgl”(2 (4,4,)=B(4 -1, -1) given in
0

Chaudhury [1].
3. Integral Representations

Theorem 3.1. The following integral transforms holds true:

B (A, 4, ) = 2 .2[ cos™ gsin*=* gE,  (-a cos’ gsin’ g )dg (30)
B (A, 4, ) = j (-t E, (~at" (1-t")) (31)
K. _ 1 T -1 -1 Wt( )
B* (A,iz)_awz_ljt (=) By | — |t (32)
P (R @a(l+a)t(l-t)
B (4,4, )=(1+a) o [——~2 —E__|- d
@ (ﬂ’l ) ( +0{) a E[ (t+a)/h+ﬂz Kviz[ (t+a)2 t (33)

Proof
In equation (16), putting t=cos*¢ then dt =-2cos@singdg when t:0:¢=% and t=1:¢=0.

Therefore

By (4, 4,) = [ cos*? @sin**? OE, (- cos’ Osin’ 6)(-2cos Osin 0d0) (34)

y\)‘h"—.o

On simplifying, we get the required result. In equation (16), putting t = u" then dt =nu"™* when t=0:u=0
and t =1:u =1. Therefore

B (4, 4,) = [u"™ 1EW2 (—wu”(l—u”))nu”’ldu (35)

O Ly

u du
On simplifying, we obtain the desired result. In equation (16), putting t = —then dt =—when t=0:u=0
a a

and t =1:uU =« . Therefore

a A1 _ A1 —
) (S )

(I+a)u a(l+a)
mthen dt = ( )2 du when
a U+«

On simplifying we obtain the required result. In equation (16), putting t =

t=0:u=0and t=1:u=1. Therefore

16
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g (%,%):ﬂ(ua)url(a(l—u)jﬂa1 - (_ o-a(1+a)U(21u)J

U+a U+a (u+a)

a(1+ a)

du 37
(u+a)2 5

X

On simplifying, we obtain the desired result.

Theorem 3.2. The following integral transformations holds true:

P wt
B (A, =|——=E.. |~ dt (38)
(4. 2%) !(1+t)*ﬂ e [ (1+t)2J
I e ot
B* ——— B |~ dt (39)
(A.2)= I(1+t)‘1 Ao [ (1+t)2J
ptat thﬂf1 ot
B ’“2 — dt 40
/11 Az .([( M+2, KI'KZ [ (1+t)2J ( )
F wabt
B*2 A s Eup| ——— | dt (41)
< { (B+at) b( (ﬂ+at)zJ
% s o241 241 2
B (ﬂl,/”tz)=2aﬂiﬂ‘2j sm2 ¢Cf)52 fi@ E __oafjtan” ¢ _ldg 42)
2 (cos’ ¢ +asin® ¢) (B+atan’ g)
Proof
) . u du . .
In equation (16), puttingt = ,dt = > Whent=0:u=0and t=1:u—co.
1+u (1+u)
Therefore
Tourt 1 ~wu du
B ’<2 /1 = E
(% ! (L+u)*" (Leu)=" =" ((1+u)2}(1+u)2
Toourt @u
B (4,4 )=|—FE,,| —— |du 43
- () !(HU)M *’[ (1+u)2] (3
On interchanging the variables, we obtain the required result. Using symmetric property in (43) we obtain:
Toouet @u
Bi* (4,4 )=|—F+E, . |- du 44
o (A ) z[(l+u)ﬂi% : 2[ (1+u)2] 44

On adding equation (43) and (44) we obtain the required result. Using equation (3.15) we get:

17
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0

rcurz _l - ou
o ) [ ey

Tha @u
——E — d 45
Jr'!.(l+u)2“ﬂ2 WZL (1+u)2J - 49

Setting u=t"", du=—t?dtwhen u=1:t=1and U —o0:t=0.On the second integral of the right hand side
of equation (45) give the desired result.

In equation (38), using t = %u then dt = gdu when X=0:u=0and t — oo0:u —> . Therefore,

B, | ey
= @| —u
ﬂ—E __\BJ 2 qu (46)

B (4, 4) =

Mtd RO, 2
°(1+auj (1+auj d
B B

On simplifying, we obtained the desired result. In equation (41), putting X = tan® ¢, dx = 2tan ¢sec’® ¢ when

X=0:¢=0 and X—>oo:¢:%.Theref0re,

z t 2 VAl 5
B (ﬂl ;t a@pﬂzj‘ an ¢) Em«z __@afn’ g > |2tan gsecpd g (47)
o (L+atan?g)"” (8+atan®¢)

On simplifying we get the desired result.

Theorem 3.3. The following integral representation holds true:

Lot (1-t)"" 1-t
B (4, 4,) = a* B I LA i G g (48)

0 a+( )} {,8+(a—,8)t}

LAt (1—x)ﬂf1 @affx(1-X)
B2 (A, 4,) = B ,B+7/j“ ——E | ——————=~ | & (49)

n e e [

Proof
In equation (16), putting %—?za—ﬂ then dt={ ( aﬂ) }ZMZ duwhen t=0:u=0and
a+(f—-a)u

t =1:u =1give the desired result. Lastly, interchanging «zand £ in equation (48) and substitute & — f =y
give equation (49).

Theorem 3.4. The following integral representations holds true:

18
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5 (1) = (8- ) [t (5, . [_W(t—a)(ﬂz—t)J P,
(4 I v (B-a)
By (A, 4,) =27 j(t +1)* (1) E, (—W) dt (51)

Proof

Firstly, in (16) putting t =;_—a , then dt = ,whent=0:u=qa and t =1:u = 3. Therefore

ey O B0 [ o-a(p) @
G e S S e e P

B (22 = (5-a) ** J(u-a) (50" e, ( olu-alls “)Jdu (50)

On interchanging the variables, we get the required result. Lastly, in (50) putting o =—1and =1, we obtain
the required result

Theorem 3.5. The following formulas hold.

Looth?(1-t)®" @aft(1-t)
By (A, 4 ) =a™ " —E, |- > |dt (51)
(o) = !{m(ﬂ_a)t}M [ la+(p-a)t)
Ltat (1-t)" [ waﬂt(lt)]
B (A 4) =B (B+7)" [ B | —————~ |t (52)
() =f2 (B+7) !(ﬁwt)w (B+11)
Proof
Firstly, in equation (16), putting g—éza—ﬂ then dt = o duwhen t=0:u=0 and
u t {a+(f-a)u}

t=1:u=1, therefore

PR T o 7 Tt
) e [ {a+<ﬂ—a>u}2]

x ap du (53)

On simplifying, we obtain the desired result in equation (53). Lastly, in equation (53) interchanging « and £
and later replacing & — 8 = y give the required result.

Theorem 3.6. The following integral representation formula hold true:
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[ (405 () =4

O eV [ N

Trz“ﬂ”ﬁ)r cos** @sin*#* E, , (-wcos® 0)E, , (-wsin® 0)drdo
0

Proof
In equation (12), putting 4, =n*and 4, = m* yield:

'z (4,) = 2_[n“1’1EK11K2 (—wnz)dn (54)
0
e (1,)= ZJ. m“?‘lEW2 (—wmz)dm (55)
0
Multiplying (54) and (55), yield:

P ()05 (1) =4

O sy §
Oy 8

N im*e g, (-@n’)E, . (~@m’)dndm (56)

Putting N=rcos@and m=rsin@ give the result

Remarks 3.1.
1. Ifb=1, then ™" (4 )" (4,) =T" (4, )" (A, )given by Pucheta [8]

2. If Ky =K, =1and x=r?, then " (4 )" (1,)=T(4)(4,)=B(4,4)(4 +4,) given
in [1]
Other integral formulas for related generalized gamma and beta functions are given by Abubakar and Kabara in
[34, 35].

4. The Beta Distribution of B2 (4,4, )

The extended modified beta distribution ij(h,g), where h and g satisfy the condition—oo<h<oo,

-0 < g<owand >0 as

— —  t"(1-t)E. (-@t(1-1)), O<t<1
f(X): B;LKz(h,g) ( ) a,b( w( )) <t< (57)

0, otherwise
h,g € R,®, Kk, k, €RY
g

The r™ moment of X for any real number, I is given by:

r Bz:;l"(z h+r’g
E(X")= B;;m(z(h,g))' (h,g € R,B,1c1, K € R) 59

Forr =1, the mean is given by:

20



Abubakar et al. CUJSE 18(1): 009-023 (2021)

_ B (h+19)

/J:E(X)_W, (h,gER,O',Kl,KZER+ (59)

The variance of the distribution is given by:

5 =E(X?)-{E(X)}

B"lK2 h,g)B" h+Zg B h+1g
{Bl(l Ky h g }
The moment generating function of the distribution is given by:
M(t)=— L+ 3'BE%(h+n, g)t” (61)
Bwlv 2 (hfg) n=0
The cumulative distribution is defined as
B*2 (h,
@t ( g) (62)

F(t)=-2 =2
( ) B;l,)(z (h, g)
Where

t
Bs (h,g) = jt“—l (1-t)E,., (-=t(1-1))dt, (h,g € R K\, K, €RY)
0

is the extended modified incomplete beta function.

5. Conclusion

By using two parameters Mittag — Leffler function, we have defined a new modified gamma FKl’KZ and beta

. K, ,K. . . .. . . .
functions B_*""2 . In their special cases, these generalizations include the extension of gamma and beta functions

which were presented in [8]. We have investigated some properties of these generalized functions, most of which
are analogous with the classical and other related generalized gamma and beta functions.

It is expected that the results obtained in this study will be prove significant in area of statistic, physics,
engineering and applied mathematics.
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